First-principles description of anomalously low lattice thermal conductivity in thermoelectric Cu-Sb-Se ternary semiconductors

被引:240
作者
Zhang, Yongsheng [1 ]
Skoug, Eric [2 ]
Cain, Jeffrey [2 ]
Ozolins, Vidvuds [3 ]
Morelli, Donald [2 ]
Wolverton, C. [1 ]
机构
[1] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA
[2] Michigan State Univ, Dept Chem Engn & Mat Sci, E Lansing, MI 48824 USA
[3] Univ Calif Los Angeles, Dept Mat Sci & Engn, Los Angeles, CA 90095 USA
关键词
CRYSTAL-STRUCTURE; HEAT-CONDUCTION;
D O I
10.1103/PhysRevB.85.054306
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Experimental measurements have recently shown that Cu3SbSe3 exhibits anomalously low and nearly temperature-independent lattice thermal conductivity, whereas Cu3SbSe4 does not exhibit this anomalous behavior. To understand this strong distinction between these two seemingly similar compounds, we perform density functional theory calculations of the vibrational properties of these two semiconductors within the quasiharmonic approximation. We observe strikingly different behavior in the two compounds: almost all the acoustic-mode Gruneisen parameters are negative in Cu3SbSe4, whereas almost all are positive in Cu3SbSe3 throughout their respective Brillouin zones. The average of the square of the Gruneisen parameter for the acoustic mode in Cu3SbSe3 is larger than that of Cu3SbSe4, which theoretically confirms that Cu3SbSe3 has a stronger lattice anharmonicity than Cu3SbSe4. The soft frequency and high Gruneisen parameters in Cu3SbSe3 arise from the electrostatic repulsion between the lone s(2) pair at Sb sites and the bonding charge in Sb-Se bonds. Using our first-principles-determined longitudinal and transverse acoustic-mode Gruneisen parameters, zone-boundary frequencies, and phonon group velocities, we calculate the lattice thermal conductivity using the Debye-Callaway model. The theoretical thermal conductivity is in good agreement with the experimental measurements.
引用
收藏
页数:6
相关论文
共 34 条
[1]   Thermal conductivity of germanium crystals with different isotopic compositions [J].
AsenPalmer, M ;
Bartkowski, K ;
Gmelin, E ;
Cardona, M ;
Zhernov, AP ;
Inyushkin, AV ;
Taldenkov, A ;
Ozhogin, VI ;
Itoh, KM ;
Haller, EE .
PHYSICAL REVIEW B, 1997, 56 (15) :9431-9447
[2]   Cooling, heating, generating power, and recovering waste heat with thermoelectric systems [J].
Bell, Lon E. .
SCIENCE, 2008, 321 (5895) :1457-1461
[3]  
Berman R., 1976, THERMAL CONDUCTION S
[4]   MODEL FOR LATTICE THERMAL CONDUCTIVITY AT LOW TEMPERATURES [J].
CALLAWAY, J .
PHYSICAL REVIEW, 1959, 113 (04) :1046-1051
[5]  
Dove M. T., 2003, STRUCTURE DYNAMICS
[6]   CRYSTAL-STRUCTURE OF CU3PSE4 AND OTHER TERNARY NORMAL TETRAHEDRAL STRUCTURE COMPOUNDS WITH COMPOSITION 13564 [J].
GARIN, J ;
PARTHE, E .
ACTA CRYSTALLOGRAPHICA SECTION B-STRUCTURAL SCIENCE, 1972, 28 (DEC15) :3672-3674
[7]  
Grimvall G., 1986, Thermophysical Properties ofMaterials, Cohesion and Structure
[8]   Quantum dot superlattice thermoelectric materials and devices [J].
Harman, TC ;
Taylor, PJ ;
Walsh, MP ;
LaForge, BE .
SCIENCE, 2002, 297 (5590) :2229-2232
[9]   Thermopower enhancement in lead telluride nanostructures [J].
Heremans, JP ;
Thrush, CM ;
Morelli, DT .
PHYSICAL REVIEW B, 2004, 70 (11) :115334-1
[10]   Cubic AgPbmSbTe2+m:: Bulk thermoelectric materials with high figure of merit [J].
Hsu, KF ;
Loo, S ;
Guo, F ;
Chen, W ;
Dyck, JS ;
Uher, C ;
Hogan, T ;
Polychroniadis, EK ;
Kanatzidis, MG .
SCIENCE, 2004, 303 (5659) :818-821