Solving connection and linearization problems within the Askey scheme and its q-analogue via inversion formulas

被引:35
作者
Area, I
Godoy, E
Ronveaux, A
Zarzo, A
机构
[1] Fac Univ Notre Dame Paix, B-5000 Namur, Belgium
[2] Univ Vigo, ETS Ingn Ind & Minas, Dept Matemat Aplicada, Vigo 36200, Spain
[3] Univ Granada, Fac Ciencias, Inst Carlos I Fis Teor & Computac, Granada, Spain
[4] Univ Politecn Madrid, ETS Ingn Ind, Dept Matemat Aplicada, E-28040 Madrid, Spain
关键词
hypergeometric polynomials; basic hypergeometric polynomials; inversion problems; connection problems; linearization problems;
D O I
10.1016/S0377-0427(00)00640-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For the polynomial families {P-n(x)}(n) belonging to the Askey scheme or to its q-analogue, the hypergeometric representation provides a natural expansion of the form P-n(x) = Sigma D-n(m=0)m(n)theta (m)(x), where the expanding basis theta (m)(x) is, in general, a product of Pochhammer symbols or q-shifted factorials. In this paper we solve the corresponding inversion problem, i.e. we compute the coefficients I-m(n) in the expansion theta (n)(x) = Sigma I-n(m=0)m(n)P-m(x), which are then used as a tool for solving any connection and linearization problem within the Askey scheme and its q-analogue. Extensions of this approach for polynomials outside these two schemes are also given. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:151 / 162
页数:12
相关论文
共 35 条
[1]   Modified Clebsch-Gordan-type expansions for products of discrete hypergeometric polynomials [J].
Alvarez-Nodarse, R ;
Yanez, RJ ;
Dehesa, JS .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1998, 89 (01) :171-197
[2]   Recurrence relations for connection coefficients between Q-orthogonal polynomials of discrete variables in the non-uniform lattice x(s)=q(2s) [J].
AlvarezNodarse, R ;
Ronveaux, A .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1996, 29 (22) :7165-7175
[3]  
ALVAREZNODARSE R, 1995, INTEGRAL TRANSFORM S, V4, P243
[4]  
ANDREWS GE, 1985, LECT NOTES MATH, V1171, P36
[5]  
Andrews GE, 1999, ENCY MATH ITS APPL, V71
[6]  
[Anonymous], 1964, Handbook of mathematical functions
[7]  
Area I, 1999, J SYMB COMPUT, V28, P767, DOI 10.1006/jsco.1998.0338
[8]   Linearization and connection coefficients for hypergeometric-type polynomials [J].
Artes, PL ;
Dehesa, JS ;
Martinez-Finkelshtein, A ;
Sanchez-Ruiz, J .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1998, 99 (1-2) :15-26
[9]   SET OF ORTHOGONAL POLYNOMIALS THAT GENERALIZE THE RACAH COEFFICIENTS OR 6-J SYMBOLS [J].
ASKEY, R ;
WILSON, J .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1979, 10 (05) :1008-1016
[10]  
Askey R, 1985, MEMOIRS AM MATH SOC, V319