Identifying Rare Cell Populations in Comparative Flow Cytometry

被引:0
|
作者
Azad, Ariful [1 ]
Langguth, Johannes [2 ]
Fang, Youhan [1 ]
Qi, Alan [1 ]
Pothen, Alex [1 ]
机构
[1] Purdue Univ, Dept Comp Sci, W Lafayette, IN 47907 USA
[2] Univ Bergen, Dept Informat, N-5020 Bergen, Norway
来源
ALGORITHMS IN BIOINFORMATICS | 2010年 / 6293卷
关键词
flow cytometry; edge cover; clique; mixture modeling; KL divergence; acute promyelocytic leukemia (APL);
D O I
暂无
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Multi-channel, high throughput experimental methodologies for flow cytometry are transforming clinical immunology and hematology, and require the development of algorithms to analyze the high-dimensional, large-scale data. We describe the development of two combinatorial algorithms to identify rare cell populations in data from mice with acute promyelocytic leukemia. The flow cytometry data is clustered, and then samples from the leukemic, pre-leukemic, and Wild Type mice are compared to identify clusters belonging to the diseased state. We describe three metrics on the clustered data that help in identifying rare populations. We formulate a generalized edge cover approach in a bipartite graph model to directly compare clusters in two samples to identify clusters belonging to one but not the other sample. For detecting rare populations common to many diseased samples but not to the Wild Type, we describe a clique-based branch and bound algorithm. We provide statistical justification of the significance of the rare populations.
引用
收藏
页码:162 / +
页数:2
相关论文
共 50 条
  • [1] Identifying Cell Populations in Flow Cytometry Data Using Phenotypic Signatures
    Pouyan, Maziyar Baran
    Nourani, Mehrdad
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2017, 14 (04) : 880 - 891
  • [2] Detecting Rare Cell Populations in Flow Cytometry Data using UMAP
    Weijler, Lisa
    Diem, Markus
    Reiter, Michael
    Maurer-Granofszky, Margarita
    Schumich, Angela
    Dworzak, Michael
    2020 25TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2021, : 4903 - 4909
  • [3] Metabolomic profiling of rare cell populations isolated by flow cytometry from tissues
    DeVilbiss, Andrew W.
    Zhao, Zhiyu
    Martin-Sandoval, Misty S.
    Ubellacker, Jessalyn M.
    Tasdogan, Alpaslan
    Agathocleous, Michalis
    Mathews, Thomas P.
    Morrison, Sean J.
    ELIFE, 2021, 10 : 1 - 23
  • [4] Frequency Determination of Rare Populations by Flow Cytometry: A Hematopoietic Stem Cell Perspective
    Nilsson, Alexandra Rundberg
    Bryder, David
    Pronk, Cornelis J. H.
    CYTOMETRY PART A, 2013, 83A (08) : 721 - 727
  • [5] Flow cytometry: measuring cell populations and studying cell physiology - Introduction to flow cytometry
    Weaver, JL
    METHODS, 2000, 21 (03) : 199 - 201
  • [6] Photometric analysis of cell populations with flow cytometry
    Schroeder, Groff M.
    Sensors (Peterborough, NH), 1988, 5 (08):
  • [7] Flow cytometry of small cell populations and allergy
    Magnan, A
    REVUE DES MALADIES RESPIRATOIRES, 2000, 17 (03) : 619 - 621
  • [8] Multidimensional Flow Cytometry for Detection of Rare Populations in Hematological Malignancies
    Li, Chi-Cheng
    Loken, Michael R.
    Kao, Ruey-Ho
    Wang, Tso-Fu
    Tsai, Shii-Shou
    Hsu, Shu-Min
    Yao, Chao-Yuan
    Li, Szu-Chin
    Huang, Kuan-Po
    Wu, Yi-Feng
    Huang, Wei-Han
    Chu, Sung-Chao
    TZU CHI MEDICAL JOURNAL, 2009, 21 (01): : 40 - 51
  • [9] Identifying leukocyte populations in fresh and cryopreserved sputum using flow cytometry
    Brooks, Collin R.
    van Dalen, Christine J.
    Hermans, Ian F.
    Douwes, Jeroen
    CYTOMETRY PART B-CLINICAL CYTOMETRY, 2013, 84B (02) : 104 - 113
  • [10] BayesFlow: latent modeling of flow cytometry cell populations
    Kerstin Johnsson
    Jonas Wallin
    Magnus Fontes
    BMC Bioinformatics, 17