Order and Spectrum Preserving Maps on Positive Operators

被引:9
作者
Semrl, Peter [1 ]
机构
[1] Univ Ljubljana, Fac Math & Phys, Jadranska 19, SI-1000 Ljubljana, Slovenia
来源
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES | 2017年 / 69卷 / 06期
关键词
spectrum preserver; order preserver; positive operator; SPACE EFFECT ALGEBRAS; MAXIMAL-IDEALS; LINEAR-MAPS; AUTOMORPHISMS;
D O I
10.4153/CJM-2016-039-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We describe the general form of surjective maps on the cone of all positive operators that preserve order and spectrum. The result is optimal as shown by counterexamples. As an easy consequence, we characterize surjective order and spectrum preserving maps on the set of all selfadjoint operators.
引用
收藏
页码:1422 / 1435
页数:14
相关论文
共 17 条
[1]  
Aupetit B, 1998, BANACH ALGEBRAS '97, P55
[2]   An extension of the Gleason-Kahane-Zelazko theorem: A possible approach to Kaplansky's problem [J].
Bresar, Matej ;
Semrl, Peter .
EXPOSITIONES MATHEMATICAE, 2008, 26 (03) :269-277
[3]   ON POSITIVE LINEAR-MAPS PRESERVING INVERTIBILITY [J].
CHOI, MD ;
HADWIN, D ;
NORDGREN, E ;
RADJAVI, H ;
ROSENTHAL, P .
JOURNAL OF FUNCTIONAL ANALYSIS, 1984, 59 (03) :462-469
[4]   An elementary proof for the non-bijective version of Wigner's theorem [J].
Geher, Gy. P. .
PHYSICS LETTERS A, 2014, 378 (30-31) :2054-2057
[5]   A CHARACTERIZATION OF MAXIMAL IDEALS [J].
GLEASON, AM .
JOURNAL D ANALYSE MATHEMATIQUE, 1967, 19 :171-&
[6]  
Horn R.A., 1986, Matrix Analysis
[7]   A CHARACTERIZATION OF MAXIMAL IDEALS IN COMMUTATIVE BANACH ALGEBRAS [J].
KAHANE, JP ;
ZELAZKO, W .
STUDIA MATHEMATICA, 1968, 29 (03) :339-&
[8]  
Kaplansky I, 1970, Conference Board of the Mathematical Sciences Regional Conference Series in Mathematics, V1
[9]   Order-automorphisms of the set of bounded observables [J].
Molnár, L .
JOURNAL OF MATHEMATICAL PHYSICS, 2001, 42 (12) :5904-5909
[10]   Characterizations of the automorphisms of Hilbert space effect algebras [J].
Molnár, L .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2001, 223 (02) :437-450