THE NUMBER OF MAXIMAL SUBGROUPS AND PROBABILISTIC GENERATION OF FINITE GROUPS

被引:0
作者
Ballester-Bolinches, Adolfo [1 ]
Esteban-Romero, Ramon [1 ,2 ]
Jimenez-Seral, Paz [3 ]
Meng, Hangyang [1 ]
机构
[1] Univ Valencia, Dept Matemat, Dr Moliner 50, E-46100 Valencia, Spain
[2] Univ Politecn Valencia, Inst Univ Matemat Pura & Aplicada, Cami Vera S-N, E-46022 Valencia, Spain
[3] Univ Zaragoza, Dept Matemat, Pedro Cerbuna 12, E-50009 Zaragoza, Spain
关键词
Finite group; maximal subgroup; probabilistic generation; primitive group; PROFINITE GROUPS; CROWNS;
D O I
10.22108/ijgt.2019.114469.1521
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this survey we present some significant bounds for the number of maximal subgroups of a given index of a finite group. As a consequence, new bounds for the number of random generators needed to generate a finite d-generated group with high probability which are significantly tighter than the ones obtained in the paper of Jaikin-Zapirain and Pyber (Random generation of finite and profinite groups and group enumeration, Ann. Math., 183 (2011) 769-814) are obtained. The results of Jaikin-Zapirain and Pyber, as well as other results of Lubotzky, Detomi, and Lucchini, appear as particular cases of our theorems.
引用
收藏
页码:31 / 42
页数:12
相关论文
共 22 条
[1]  
Baer R., 1957, ILLINOIS J MATH, V1, P115, DOI 10.1215/ijm/1255379396
[2]  
Ballester-Bolinches A., 2006, MATH ITS APPL, V584, DOI [10.1007/1-4020-4719-3, DOI 10.1007/1-4020-4719-3]
[3]  
Ballester-Bolinches A., PREPRINT
[4]   Maximal subgroups in finite and profinite groups [J].
Borovik, AV ;
Pyber, L ;
Shalev, A .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 348 (09) :3745-3761
[5]   Generation and random generation: From simple groups to maximal subgroups [J].
Burness, Timothy C. ;
Liebeck, Martin W. ;
Shalev, Aner .
ADVANCES IN MATHEMATICS, 2013, 248 :59-95
[6]   Finite groups that need more generators than any proper quotient [J].
Dalla Volta, F ;
Lucchini, A .
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES A-PURE MATHEMATICS AND STATISTICS, 1998, 64 :82-91
[7]  
Dalla Volta F, 2001, J AUST MATH SOC A, V71, P177
[8]  
Detomi E, 2006, LECT NOTES PURE APPL, V243, P47
[9]   Crowns and factorization of the probabilistic zeta function of a finite group [J].
Detomi, E ;
Lucchini, A .
JOURNAL OF ALGEBRA, 2003, 265 (02) :651-668
[10]   PROBABILITY OF GENERATING SYMMETRIC GROUP [J].
DIXON, JD .
MATHEMATISCHE ZEITSCHRIFT, 1969, 110 (03) :199-&