SPLITTING FAMILIES IN GALOIS COHOMOLOGY

被引:1
作者
Demarche, Cyril [1 ,2 ]
Florence, Mathieu [1 ]
机构
[1] Univ Paris, Sorbonne Univ, CNRS, IMJ PRG, F-75005 Paris, France
[2] PSL Res Univ, Dept Math & Applicat, ENS, CNRS, 45 Rue Ulm, F-75005 Paris, France
来源
ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE | 2021年 / 54卷 / 03期
关键词
D O I
10.24033/asens.2470
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let k be a field, with absolute Galois group Gamma. Let A/k be a finite etale group scheme of multiplicative type, i.e., a finite discrete Gamma-module. Let n >= 2 be an integer, and let x is an element of H-n (k, A) be a cohomology class. We show that there exists a countable set I, and a family (X-i)(i is an element of I) of (smooth, geometrically integral) k-varieties, such that the following holds: for any field extension l/k, the restriction of x vanishes in H-n (l, A) if and only if (at least) one of the X-i has an l-point. In addition, we show that the X-i can be made into an ind-variety. In the case n = 2, we note that one variety is enough.
引用
收藏
页码:779 / 792
页数:14
相关论文
共 9 条
[1]  
[Anonymous], 1971, GRUNDL MATH WISS
[2]  
J-P. S ERRE, 2003, COHOMOLOGICAL INVARI, V28, p1D100
[3]  
O ORT F., 1964, MATH ANN, V153
[4]  
OURBAKI N. B, 1980, ELEMENTS MATH
[5]  
RASHEN D. K, 2016, B LOND MATH SOC, V48
[6]  
Rost M., 2002, P INT C MATHEMATICIA, VII, P77
[7]   Norm varieties [J].
Suslin, A ;
Joukhovitski, S .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2006, 206 (1-2) :245-276
[8]  
Totaro B., 1999, THEORY, V67, P249, DOI DOI 10.1090/PSPUM/067/1743244
[9]  
Verdier J.-L., 1996, ASTERISQUE, V239