Minimally subtracted six-loop renormalization of O(n)-symmetric φ4 theory and critical exponents

被引:167
作者
Kompaniets, Mikhail V. [1 ]
Panzer, Erik [2 ]
机构
[1] St Petersburg State Univ, 7-9 Univ Skaya Nab, St Petersburg 199034, Russia
[2] Univ Oxford, All Souls Coll, Oxford OX1 4AL, England
基金
俄罗斯基础研究基金会; 欧洲研究理事会;
关键词
4-LOOP MASSLESS PROPAGATORS; PERTURBATION-THEORY; 3; DIMENSIONS; ASYMPTOTIC-BEHAVIOR; GRAPHICAL FUNCTIONS; BOREL SUMMABILITY; DIVERGENT SERIES; CRITICAL INDEXES; 1/N EXPANSION; HIGHER ORDERS;
D O I
10.1103/PhysRevD.96.036016
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We present the perturbative renormalization group functions of O(n)-symmetric phi(4) theory in 4 - 2 epsilon dimensions to the sixth loop order in the minimal subtraction scheme. In addition, we estimate diagrams without subdivergences up to 11 loops and compare these results with the asymptotic behavior of the beta function. Furthermore we perform a resummation to obtain estimates for critical exponents in three and two dimensions.
引用
收藏
页数:26
相关论文
共 159 条
  • [1] Five-loop numerical evaluation of critical exponents of the φ4 theory
    Adzhemyan, L. Ts.
    Kompaniets, M. V.
    [J]. 15TH INTERNATIONAL WORKSHOP ON ADVANCED COMPUTING AND ANALYSIS TECHNIQUES IN PHYSICS RESEARCH (ACAT2013), 2014, 523
  • [2] [Anonymous], ARXIV14113585
  • [3] [Anonymous], ARXIVMATHPH0010025
  • [4] [Anonymous], P0453 INR
  • [5] [Anonymous], 2002, Internat. Ser. Mono. Phys
  • [6] [Anonymous], MAPL 16
  • [7] CRITICAL EXPONENTS FOR A 3-DIMENSIONAL O(N)-SYMMETRICAL MODEL WITH N-GREATER-THAN-3
    ANTONENKO, SA
    SOKOLOV, AI
    [J]. PHYSICAL REVIEW E, 1995, 51 (03): : 1894 - 1898
  • [8] Five-loop fermion anomalous dimension for a general gauge group from four-loop massless propagators
    Baikov, P. A.
    Chetyrkin, K. G.
    Kuehn, J. H.
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2017, (04):
  • [9] Five-Loop Running of the QCD Coupling Constant
    Baikov, P. A.
    Chetyrkin, K. G.
    Kuehn, J. H.
    [J]. PHYSICAL REVIEW LETTERS, 2017, 118 (08)
  • [10] Four loop massless propagators: An algebraic evaluation of all master integrals
    Baikov, P. A.
    Chetyrkin, K. G.
    [J]. NUCLEAR PHYSICS B, 2010, 837 (03) : 186 - 220