Context-based Appearance Descriptor for 3D Human Pose estimation from Monocular Images

被引:10
|
作者
Sedai, S. [1 ]
Bennamoun, M. [1 ]
Huynh, D. [1 ]
机构
[1] Univ Western Australia, Sch Comp Sci & Software Engn, Crawley, WA 6009, Australia
关键词
human pose estimation; local feature descriptors; surveillance; performance evaluation;
D O I
10.1109/DICTA.2009.81
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper we propose a novel appearance descriptor for 3D human pose estimation from monocular images using a learning-based technique. Our image-descriptor is based on the intermediate local appearance descriptors that we design to encapsulate local appearance context and to be resilient to noise. We encode the image by the histogram of such local appearance context descriptors computed in an image to obtain the final image-descriptor for pose estimation. We name the final image-descriptor the Histogram of Local Appearance Context (HLAC). We then use Relevance Vector Machine (RVM) regression to learn the direct mapping between the proposed HLAC image-descriptor space and the 3D pose space. Given a test image, we first compute the HLAC descriptor and then input it to the trained regressor to obtain the final output pose in real time. We compared our approach with other methods using a synchronized video and 3D motion dataset. We compared our proposed HLAC image-descriptor with the Histogram of Shape Context and Histogram of SIFT like descriptors. The evaluation results show that HLAC descriptor outperforms both of them in the context of 3D Human pose estimation.
引用
收藏
页码:484 / 491
页数:8
相关论文
共 50 条
  • [1] Multi-Person 3D Human Pose Estimation from Monocular Images
    Dabral, Rishabh
    Gundavarapu, Nitesh B.
    Mitra, Rahul
    Sharma, Abhishek
    Ramakrishnan, Ganesh
    Jain, Arjun
    2019 INTERNATIONAL CONFERENCE ON 3D VISION (3DV 2019), 2019, : 405 - 414
  • [2] Recovering 3D human pose from monocular images
    Agarwal, A
    Triggs, B
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2006, 28 (01) : 44 - 58
  • [3] Learning Monocular 3D Human Pose Estimation from Multi-view Images
    Rhodin, Helge
    Sporri, Jorg
    Katircioglu, Isinsu
    Constantin, Victor
    Meyer, Frederic
    Mueller, Erich
    Salzmann, Mathieu
    Fua, Pascal
    2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, : 8437 - 8446
  • [4] 3D Human Pose Estimation from Monocular Images with Deep Convolutional Neural Network
    Li, Sijin
    Chan, Antoni B.
    COMPUTER VISION - ACCV 2014, PT II, 2015, 9004 : 332 - 347
  • [5] Human Context: Modeling Human-Human Interactions for Monocular 3D Pose Estimation
    Andriluka, Mykhaylo
    Sigal, Leonid
    ARTICULATED MOTION AND DEFORMABLE OBJECTS, 2012, 7378 : 260 - 272
  • [6] A survey on monocular 3D human pose estimation
    Ji X.
    Fang Q.
    Dong J.
    Shuai Q.
    Jiang W.
    Zhou X.
    Virtual Reality and Intelligent Hardware, 2020, 2 (06): : 471 - 500
  • [7] MONOCULAR 3D HUMAN POSE ESTIMATION BY CLASSIFICATION
    Greif, Thomas
    Lienhart, Rainer
    Sengupta, Debabrata
    2011 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO (ICME), 2011,
  • [8] Context-Aware Network for 3D Human Pose Estimation from Monocular RGB Image
    Yin, Binyi
    Zhang, Dongbo
    Li, Shuai
    Hao, Aimin
    Qin, Hong
    2019 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2019,
  • [9] Adapted human pose: monocular 3D human pose estimation with zero real 3D pose data
    Liu, Shuangjun
    Sehgal, Naveen
    Ostadabbas, Sarah
    APPLIED INTELLIGENCE, 2022, 52 (12) : 14491 - 14506
  • [10] Adapted human pose: monocular 3D human pose estimation with zero real 3D pose data
    Shuangjun Liu
    Naveen Sehgal
    Sarah Ostadabbas
    Applied Intelligence, 2022, 52 : 14491 - 14506