A numerical method for the solution of nonlinear Volterra Hammerstein integral equations of the third-kind

被引:14
|
作者
Dastjerdi, H. Laeli [1 ]
Shayanfard, F. [2 ]
机构
[1] Farhangian Univ, Dept Math, Tehran, Iran
[2] Payame Noor Univ, Dept Math, Tehran, Iran
关键词
Nonlinear Volterra integral equations of the third-kind; Spectral collocation method; Hammerstein integral equations; SPECTRAL-COLLOCATION METHODS;
D O I
10.1016/j.apnum.2021.08.006
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we analyze spectral collocation method on a special class of nonlinear Volterra Hammerstein integral equations of the third-kind. After explaining the method, convergence analysis is discussed and then some examples are considered to show the validity of the theoretical results. (C) 2021 IMACS. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:353 / 363
页数:11
相关论文
共 50 条
  • [1] Numerical solution of nonlinear third-kind Volterra integral equations using an iterative collocation method
    Kherchouche, Khedidja
    Bellour, Azzeddine
    Lima, Pedro
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2023, 100 (11) : 2063 - 2076
  • [2] Numerical solution of a class of third-kind Volterra integral equations using Jacobi wavelets
    S. Nemati
    Pedro M. Lima
    Delfim F. M. Torres
    Numerical Algorithms, 2021, 86 : 675 - 691
  • [3] Numerical solution of a class of third-kind Volterra integral equations using Jacobi wavelets
    Nemati, S.
    Lima, Pedro M.
    Torres, Delfim F. M.
    NUMERICAL ALGORITHMS, 2021, 86 (02) : 675 - 691
  • [4] Numerical solution of third-kind Volterra integral equations with proportional delays based on moving least squares collocation method
    Aourir, E.
    Izem, N.
    Dastjerdi, H. Laeli
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2024, 101 (04) : 447 - 464
  • [5] THE METHOD OF NUMERICAL SOLUTION OF NONLINEAR VOLTERRA INTEGRAL EQUATIONS OF THE FIRST KIND
    Karakeev, T. T.
    Mustafayeva, N. T.
    NEWS OF THE NATIONAL ACADEMY OF SCIENCES OF THE REPUBLIC OF KAZAKHSTAN-SERIES PHYSICO-MATHEMATICAL, 2018, 5 (321): : 10 - 18
  • [6] Fractional Collocation Method for Third-Kind Volterra Integral Equations with Nonsmooth Solutions
    Zheng Ma
    Chengming Huang
    Journal of Scientific Computing, 2023, 95
  • [7] Iterated collocation methods for nonlinear third-kind Volterra integral equations with proportional delays
    Huiming Song
    Zhanwen Yang
    Yu Xiao
    Computational and Applied Mathematics, 2022, 41
  • [8] Fractional Collocation Method for Third-Kind Volterra Integral Equations with Nonsmooth Solutions
    Ma, Zheng
    Huang, Chengming
    JOURNAL OF SCIENTIFIC COMPUTING, 2023, 95 (01)
  • [9] Iterated collocation methods for nonlinear third-kind Volterra integral equations with proportional delays
    Song, Huiming
    Yang, Zhanwen
    Xiao, Yu
    COMPUTATIONAL & APPLIED MATHEMATICS, 2022, 41 (04):
  • [10] Theoretical and numerical analysis of third-kind auto-convolution Volterra integral equations
    Li, Yuping
    Yang, Zhanwen
    Zhang, Chiping
    COMPUTATIONAL & APPLIED MATHEMATICS, 2019, 38 (04):