Digital simulation of road-vehicle systems

被引:11
作者
Wedig, Walter V. [1 ]
机构
[1] Univ Karlsruhe, Inst Tech Mech, D-76128 Karlsruhe, Germany
关键词
Road-vehicle systems; Stochastic numerics; Second-order discrete schemes; Critical car speeds; Parameter resonances; Stability; Chaos;
D O I
10.1016/j.probengmech.2011.05.012
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
This paper investigates dynamics of road-vehicle systems via stochastic numerics, applying discrete integration schemes of first and second order. The ride on rough roads generates vertical car vibrations whose root mean squares become resonant for critical speeds. The investigations are extended to nonlinear wheel suspensions with cubic-progressive springs. For weak but still positive damping, the car vibrations become unstable in overcritical speed ranges detected by means of perturbation equations whose top Lyapunov exponent can become positive in the case of parameter resonances. This indicates that the stationary car vibrations bifurcate into stochastic chaos. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:82 / 87
页数:6
相关论文
共 15 条
  • [1] Ammon D., 1997, Modellbildung und Systementwicklung in der Fahrzeugdynamik, V1st
  • [2] Arnold L., 1974, Stochastic Differential Equations: Theory and Applications
  • [3] ARNOLD L, 2000, LECT NOTE PHYS, P280
  • [4] Power spectral density of road profiles
    Davis, BR
    Thompson, AG
    [J]. VEHICLE SYSTEM DYNAMICS, 2001, 35 (06) : 409 - 415
  • [5] DESCRIPTION OF ROAD SURFACE-ROUGHNESS
    DODDS, CJ
    ROBSON, JD
    [J]. JOURNAL OF SOUND AND VIBRATION, 1973, 31 (02) : 175 - 183
  • [6] NECESSARY AND SUFFICENT CONDITIONS FOR ASYMPTOTIC STABILITY OF LINEAR STOCHASTIC SYSTEMS
    KHASMINS.RZ
    [J]. THEORY OF PROBILITY AND ITS APPLICATIONS,USSR, 1967, 12 (01): : 144 - &
  • [7] Klotter K, 1978, LINEARE SCHWINGUNUGE
  • [8] Oseledec V I., 1968, Tr. Mosk. Mat. Obs, V19, P179
  • [9] Popp K., 1993, FAHRDYNAMIK
  • [10] SOBCZYK K, 1977, J SOUND VIB, V52, P39, DOI 10.1016/0022-460X(77)90387-X