Thermodynamic limits to energy conversion in solar thermal fuels

被引:13
作者
Strubbe, David A. [1 ,2 ]
Grossman, Jeffrey C. [1 ]
机构
[1] MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA
[2] Univ Calif, Dept Phys, Merced, CA 95348 USA
关键词
solar energy conversion; thermodynamics; photoisomerization; energy storage; STORAGE; EFFICIENCY; DESIGN;
D O I
10.1088/1361-648X/aaef5a
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
Solar thermal fuels (STFs) are an unconventional paradigm for solar energy conversion and storage which is attracting renewed attention. In this concept, a material absorbs sunlight and stores the energy chemically via an induced structural change, which can later be reversed to release the energy as heat. An example is the azobenzene molecule which has a cis-trans photoisomerization with these properties, and can be tuned by chemical substitution and attachment to templates such as carbon nanotubes, small molecules, or polymers. By analogy to the Shockley-Queisser limit for photovoltaics, we analyze the maximum attainable efficiency for STFs from fundamental thermodynamic considerations. Microscopic reversibility provides a bound on the quantum yield of photoisomerization due to fluorescence, regardless of details of photochemistry. We emphasize the importance of analyzing the free energy, not just enthalpy, of the metastable molecules, and find an efficiency limit for conversion to stored chemical energy equal to the Shockley-Queisser limit. STF candidates from a recent high-throughput search are analyzed in light of the efficiency limit.
引用
收藏
页数:7
相关论文
共 32 条
[1]   THERMODYNAMIC AND KINETIC LIMITATIONS ON CONVERSION OF SOLAR-ENERGY INTO STORABLE CHEMICAL FREE-ENERGY [J].
ALMGREN, M .
PHOTOCHEMISTRY AND PHOTOBIOLOGY, 1978, 27 (05) :603-609
[2]   Photoisomerization in different classes of azobenzene [J].
Bandara, H. M. Dhammika ;
Burdette, Shawn C. .
CHEMICAL SOCIETY REVIEWS, 2012, 41 (05) :1809-1825
[3]   SOLAR FUELS [J].
BOLTON, JR .
SCIENCE, 1978, 202 (4369) :705-711
[4]   Photon upconversion facilitated molecular solar energy storage [J].
Borjesson, Karl ;
Dzebo, Damir ;
Albinsson, Bo ;
Moth-Poulsen, Kasper .
JOURNAL OF MATERIALS CHEMISTRY A, 2013, 1 (30) :8521-8524
[5]   Efficiency Limit of Molecular Solar Thermal Energy Collecting Devices [J].
Borjesson, Karl ;
Lennartson, Anders ;
Moth-Poulsen, Kasper .
ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2013, 1 (06) :585-590
[6]   Hybrid solar converters for maximum exergy and inexpensive dispatchable electricity [J].
Branz, Howard M. ;
Regan, William ;
Gerst, Kacy J. ;
Borak, J. Brian ;
Santori, Elizabeth A. .
ENERGY & ENVIRONMENTAL SCIENCE, 2015, 8 (11) :3083-3091
[7]  
Bren V.A., 1991, Russian Chemical Reviews, V60, P451, DOI [DOI 10.1070/RC1991V060N05ABEH001088, 10.1070/RC1991v060n05ABEH001088]
[8]   Photochemical, photophysical and electrochemical properties of six dansyl-based dyads [J].
Ceroni, P ;
Laghi, I ;
Maestri, M ;
Balzani, V ;
Gestermann, S ;
Gorka, M ;
Vögtle, F .
NEW JOURNAL OF CHEMISTRY, 2002, 26 (01) :66-75
[9]  
Chen CY, 2013, SCI REP-UK, V3, DOI [10.1038/srep02411, 10.1038/srep03260]
[10]   Measuring reversible photomechanical switching rates for a molecule at a surface [J].
Comstock, Matthew J. ;
Levy, Niv ;
Cho, Jongweon ;
Berbil-Bautista, Luis ;
Crommie, Michael F. ;
Poulsen, Daniel A. ;
Frechet, Jean M. J. .
APPLIED PHYSICS LETTERS, 2008, 92 (12)