Chaos in a Fractional-Order Cancer System

被引:0
|
作者
N'Doye, Ibrahima [1 ]
Voos, Holger [1 ]
Darouach, Mohamed [2 ]
机构
[1] Univ Luxembourg, Fac Sci Technol & Commun, L-1359 Luxembourg, Luxembourg
[2] Univ Lorraine, Res Ctr Automat Control Nancy CRAN UMR 7039, IUT Longwy, CNRS, F-54400 Cosnes Et Romain, France
来源
2014 EUROPEAN CONTROL CONFERENCE (ECC) | 2014年
关键词
Fractional calculus; fractional-order cancer system; chaos; chaotic attractor; tumor growth; MATHEMATICAL-MODEL; EQUATIONS;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper deals with the fractional-order cancer system. It is based on the chaotic system concept, where the mathematical model of system contains fractional-order derivatives. We develop a fractional-order dynamical model of cancer growth, which includes the interactions between healthy tissue cells, tumor cells, and activated immune system cells, clearly leading to chaotic behavior. We perform equilibrium point analysis, indicate the conditions where chaotic dynamics can be observed, and show the existence of chaos. The behavior and stability analysis of the integer-order and the fractional commensurate and non-commensurate order cancer system with total order less than 3, which exhibits chaos, are presented as well.
引用
收藏
页码:171 / 176
页数:6
相关论文
共 50 条
  • [21] Fractional-order biological system: chaos, multistability and coexisting attractors
    Nadjette Debbouche
    Adel Ouannas
    Shaher Momani
    Donato Cafagna
    Viet-Thanh Pham
    The European Physical Journal Special Topics, 2022, 231 : 1061 - 1070
  • [22] Fractional-order biological system: chaos, multistability and coexisting attractors
    Debbouche, Nadjette
    Ouannas, Adel
    Momani, Shaher
    Cafagna, Donato
    Pham, Viet-Thanh
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2022, 231 (05): : 1061 - 1070
  • [23] Chaos in the fractional-order complex Lorenz system and its synchronization
    Luo, Chao
    Wang, Xingyuan
    NONLINEAR DYNAMICS, 2013, 71 (1-2) : 241 - 257
  • [24] Chaos synchronization of a new fractional-order system with unknown parameters
    Dang, H.-G. (fly0164@126.com), 1600, Advanced Institute of Convergence Information Technology, Myoungbo Bldg 3F,, Bumin-dong 1-ga, Seo-gu, Busan, 602-816, Korea, Republic of (06):
  • [25] Chaos and Synchronization in Complex Fractional-Order Chua's System
    Lin, Xiaoran
    Zhou, Shangbo
    Li, Hua
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2016, 26 (03):
  • [26] Chaos in the fractional-order Volta’s system: modeling and simulation
    Ivo Petráš
    Nonlinear Dynamics, 2009, 57 : 157 - 170
  • [27] Chaos in the fractional-order complex Lorenz system and its synchronization
    Chao Luo
    Xingyuan Wang
    Nonlinear Dynamics, 2013, 71 : 241 - 257
  • [28] Fractional-order Chua's system: discretization, bifurcation and chaos
    Agarwal, Ravi P.
    El-Sayed, Ahmed M. A.
    Salman, Sanaa M.
    ADVANCES IN DIFFERENCE EQUATIONS, 2013,
  • [29] Chaos control and projective synchronization of a fractional-order financial system
    Yang, Maosong
    Dong, Duan
    Ma, Shaojuan
    2015 2ND INTERNATIONAL CONFERENCE ON INFORMATION SCIENCE AND CONTROL ENGINEERING ICISCE 2015, 2015, : 651 - 655
  • [30] STUDY ON CHAOS CONTROL OF FRACTIONAL-ORDER UNIFIED CHAOTIC SYSTEM
    Yin, Chuntao
    Zhao, Yufei
    Shen, Yongjun
    Li, Xianghong
    Fang, Jingzhao
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2024,