Chaos in a Fractional-Order Cancer System

被引:0
作者
N'Doye, Ibrahima [1 ]
Voos, Holger [1 ]
Darouach, Mohamed [2 ]
机构
[1] Univ Luxembourg, Fac Sci Technol & Commun, L-1359 Luxembourg, Luxembourg
[2] Univ Lorraine, Res Ctr Automat Control Nancy CRAN UMR 7039, IUT Longwy, CNRS, F-54400 Cosnes Et Romain, France
来源
2014 EUROPEAN CONTROL CONFERENCE (ECC) | 2014年
关键词
Fractional calculus; fractional-order cancer system; chaos; chaotic attractor; tumor growth; MATHEMATICAL-MODEL; EQUATIONS;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper deals with the fractional-order cancer system. It is based on the chaotic system concept, where the mathematical model of system contains fractional-order derivatives. We develop a fractional-order dynamical model of cancer growth, which includes the interactions between healthy tissue cells, tumor cells, and activated immune system cells, clearly leading to chaotic behavior. We perform equilibrium point analysis, indicate the conditions where chaotic dynamics can be observed, and show the existence of chaos. The behavior and stability analysis of the integer-order and the fractional commensurate and non-commensurate order cancer system with total order less than 3, which exhibits chaos, are presented as well.
引用
收藏
页码:171 / 176
页数:6
相关论文
共 50 条
  • [11] Hopf bifurcation and chaos in fractional-order modified hybrid optical system
    Abdelouahab, Mohammed-Salah
    Hamri, Nasr-Eddine
    Wang, Junwei
    NONLINEAR DYNAMICS, 2012, 69 (1-2) : 275 - 284
  • [12] Optimal fractional-order PID control of chaos in the fractional-order BUCK converter
    Zhu, Darui
    Liu, Ling
    Liu, Chongxin
    PROCEEDINGS OF THE 2014 9TH IEEE CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS (ICIEA), 2014, : 787 - 791
  • [13] Chaos in fractional-order generalized Lorenz system and its synchronization circuit simulation
    Zhang Ruo-Xun
    Yang Shi-Ping
    CHINESE PHYSICS B, 2009, 18 (08) : 3295 - 3303
  • [14] Chaos in a new fractional-order system without equilibrium points
    Cafagna, Donato
    Grassi, Giuseppe
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2014, 19 (09) : 2919 - 2927
  • [15] Chaos and stability analysis of the nonlinear fractional-order autonomous system
    Boulaaras, Salah
    Sriramulu, Sabarinathan
    Arunachalam, Selvam
    Allahem, Ali
    Alharbi, Asma
    Radwan, Taha
    ALEXANDRIA ENGINEERING JOURNAL, 2025, 118 : 278 - 291
  • [16] Chaos and Synchronization in Complex Fractional-Order Chua's System
    Lin, Xiaoran
    Zhou, Shangbo
    Li, Hua
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2016, 26 (03):
  • [17] Hopf bifurcation and chaos in fractional-order modified hybrid optical system
    Mohammed-Salah Abdelouahab
    Nasr-Eddine Hamri
    Junwei Wang
    Nonlinear Dynamics, 2012, 69 : 275 - 284
  • [18] A Novel Fractional-Order System: Chaos, Hyperchaos and Applications to Linear Control
    Matouk, Ahmed Ezzat
    JOURNAL OF APPLIED AND COMPUTATIONAL MECHANICS, 2021, 7 (02): : 701 - 714
  • [19] Chaos, Hopf bifurcation and control of a fractional-order delay financial system
    Shi, Jianping
    He, Ke
    Fang, Hui
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2022, 194 : 348 - 364
  • [20] CHAOS AND ADAPTIVE SYNCHRONIZATIONS IN FRACTIONAL-ORDER SYSTEMS
    Liu, Xiaojun
    Hong, Ling
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2013, 23 (11):