Selective permeation of CO2 through pore-filled polyacrylonitrile membrane with poly(ethylene glycol)

被引:42
作者
Kim, JH
Ha, SY
Nam, SY
Rhim, JW
Baek, KH
Lee, YM [1 ]
机构
[1] Hanyang Univ, Coll Engn, Sch Chem Engn, Seoul 133791, South Korea
[2] Hannam Univ, Coll Engn, Dept Chem Engn, Daejun 306791, South Korea
基金
新加坡国家研究基金会;
关键词
composite membranes; gas separation; grafted poly(ethylene glycol) acrylates; photo-initiated graft polymerization; pore-filling;
D O I
10.1016/S0376-7388(00)00670-0
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Port-filling concept was applied to prepare high permselective composite membranes for CO2 separation. The membrane is composed of two polymeric materials: a porous substrate and filling polymers that fills the pore of the substrate. In this study, asymmetric polyacrylonitrile (PAN) membrane was used for a substrate and methoxy poly(ethylene glycol) acrylate (MePEGA, M-w = 454) was used for a photoinitiated graft polymer. The analysis of graft membrane by Fourier transform infrared and attenuated total reflection (FT-IRI FT-IR/ATR), electron spectroscopy for chemical analysis (ESCA) and field emission scanning electron microphotography (FE-SEM) revealed that the graft polymer filled the pores of the substrate. High CO2/N-2 permselectivity was shown by this Fore-filling membrane: carbon dioxide permeation flux, J(CO2) = 5.65 GPU (10(-6) cm(3)(STP/cm(2) s cmHg) and selectivity of CO2 over N-2, J(CO2)/J(N2) = 32.4 at 30 degreesC, measured by the time-lag method. The high permselectivity of the present pore-filling membrane is attributed to the high solubility selectivity due to the affinity of CO2 to PEO segment. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:97 / 107
页数:11
相关论文
共 24 条
[1]   SURFACE MODIFICATION OF POLYMERS .5. BIOMATERIAL APPLICATIONS [J].
ALLMER, K ;
HILBORN, J ;
LARSSON, PH ;
HULT, A ;
RANBY, B .
JOURNAL OF POLYMER SCIENCE PART A-POLYMER CHEMISTRY, 1990, 28 (01) :173-183
[2]  
BEAMSON G, 1992, SCI ESCA300 DATABASE, P186
[3]   Synthesis of polymer network scaffolds from L-lactide and poly(ethylene glycol) and their interaction with cells [J].
Han, DK ;
Hubbell, JA .
MACROMOLECULES, 1997, 30 (20) :6077-6083
[4]   Grafting with hydrophilic polymer chains to prepare protein-resistant surfaces [J].
Holmberg, K ;
Tiberg, F ;
Malmsten, M ;
Brink, C .
COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 1997, 123 :297-306
[5]   Preparation and characterization of comb-like PEO gradient surfaces [J].
Jeong, BJ ;
Lee, JH ;
Lee, HB .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 1996, 178 (02) :757-763
[6]   GAS PERMEABILITIES OF CELLULOSE NITRATE POLY(ETHYLENE GLYCOL) BLEND MEMBRANES [J].
KAWAKAMI, M ;
IWANAGA, H ;
HARA, Y ;
IWAMOTO, M ;
KAGAWA, S .
JOURNAL OF APPLIED POLYMER SCIENCE, 1982, 27 (07) :2387-2393
[7]   SELECTIVE TRANSPORT OF SULFUR-DIOXIDE THROUGH POLYMER MEMBRANES .1. POLYACRYLATE AND CELLULOSE TRIACETATE SINGLE-LAYER MEMBRANES [J].
KUEHNE, DL ;
FRIEDLANDER, SK .
INDUSTRIAL & ENGINEERING CHEMISTRY PROCESS DESIGN AND DEVELOPMENT, 1980, 19 (04) :609-616
[8]   Gas separation through conductive polymer membranes. 2. Polyaniline membranes with high oxygen selectivity [J].
Lee, YM ;
Ha, SY ;
Lee, YK ;
Suh, DH ;
Hong, SY .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 1999, 38 (05) :1917-1924
[9]   Effect of polyethyleneglycol (PEG) on gas permeabilities and permselectivities in its cellulose acetate (CA) blend membranes [J].
Li, JT ;
Wang, SC ;
Nagai, K ;
Nakagawa, T ;
Mau, AWH .
JOURNAL OF MEMBRANE SCIENCE, 1998, 138 (02) :143-152
[10]   ANALYSIS AND CONSTRUCTION OF MULTILAYER COMPOSITE MEMBRANES FOR THE SEPARATION OF GAS-MIXTURES [J].
LUNDY, KA ;
CABASSO, I .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 1989, 28 (06) :742-756