Heat equations with fractional white noise potentials

被引:88
作者
Hu, Y [1 ]
机构
[1] Univ Kansas, Dept Math, Lawrence, KS 66045 USA
关键词
heat equations; fractional Brownian field; multiple integral of Ito type; stochastic integral of Ito type; chaos expansion; asymptotic behavior; Mittag-Leffler function;
D O I
10.1007/s00245-001-0001-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with the following stochastic heat equations: partial derivativeu(t) (chi)/partial derivativet = 1/2 Deltau(t) (chi) + omega (H) . u(t) (chi), chi is an element of R-d, t > 0, where omega (H) is a time independent fractional white noise with Hurst parameter H = (h(1), h(2), ..., h(d)), or a time dependent fractional white noise with Hurst parameter H = (h(0), h(1), ..., h(d)). Denote /H/ = h(1) + h(2) + ... h(d). When the noise is time independent, it is shown that if 1/2 < h(i) < 1 for i = 1, 2, ..., d and if /H/ > d - 1, then the solution is in L-2 and the L-2-Lyapunov exponent of the solution is estimated. When the noise is time dependent, it is shown that if 1/2 < h(i) < 1 for i = 0, 1, ..., d and if /H/ > d - 2/(2h(0) - 1), the solution is in L-2 and the L-2-Lyapunov exponent of the solution is also estimated. A family of distribution spaces S,, p E R, is introduced so that every chaos of an element in S-rho is in L-2. The Lyapunov exponents in S, of the solution are also estimated.
引用
收藏
页码:221 / 243
页数:23
相关论文
共 34 条
[1]  
Albeverio S., 1986, NONSTANDARD METHODS
[2]  
[Anonymous], FRACTIONAL CALCULUS
[3]  
[Anonymous], 1994, STABLE NONGAUSSIAN R, DOI DOI 10.1201/9780203738818
[4]  
[Anonymous], FRACTIONAL CALCULUS
[5]  
[Anonymous], 1992, HDB MATH FUNCTIONS
[6]  
[Anonymous], 1993, QUANTUM PROBABILITY, DOI DOI 10.1007/978-3-662-21558-6
[7]   STOCHASTIC INTEGRALS IN PLANE [J].
CAIROLI, R ;
WALSH, JB .
ACTA MATHEMATICA, 1975, 134 (1-2) :111-183
[8]  
CARMONA RA, 1994, MEM AM MATH SOC, V108
[9]   Multiple fractional integrals [J].
Dasgupta, A ;
Kallianpur, G .
PROBABILITY THEORY AND RELATED FIELDS, 1999, 115 (04) :505-525
[10]   Chaos decomposition of multiple fractional integrals and applications [J].
Dasgupta A. ;
Kallianpur G. .
Probability Theory and Related Fields, 1999, 115 (4) :527-548