Modeling and analysis of nonlinear tumor-immune interaction under chemotherapy and radiotherapy

被引:5
作者
Bashkirtseva, Irina [1 ]
Chukhareva, Anna [1 ]
Ryashko, Lev [1 ]
机构
[1] Ural Fed Univ, Inst Nat Sci & Math, Ekaterinburg, Russia
基金
俄罗斯科学基金会;
关键词
chemotherapy; mathematical modeling; treatment; tumor-immune dynamics; VALIDATED MATHEMATICAL-MODEL; CANCER; DYNAMICS;
D O I
10.1002/mma.7706
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper examines the effects of treatment on tumor-immune dynamics based on a conceptual two-dimensional model. In absence of treatment, this model exhibits regimes of "active" and "dormant" tumor. Increasing intensity of chemotherapy entails a significant complication of tumor-immune interaction with parameter zones of monostability, bistability, and tristability where "active," "dormant," and "zero" tumor states can coexist. A detailed description of bifurcations, attractors, and their basins is given. Based on this mathematical analysis, we discuss efficiency of various programs of treatment combining chemotherapy and radiotherapy.
引用
收藏
页码:7983 / 7991
页数:9
相关论文
共 14 条
[1]   Analysis of noise-induced phenomena in the nonlinear tumor-immune system [J].
Bashkirtseva, I ;
Ryashko, L. .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2020, 549
[2]   The effect of time ordering and concurrency in a mathematical model of chemoradiotherapy [J].
Bashkirtseva, Irina ;
Ryashko, Lev ;
Lopez, Alvaro G. ;
Seoane, Jesus M. ;
Sanjuan, Miguel A. F. .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2021, 96
[3]   Tumor Stabilization Induced by T-Cell Recruitment Fluctuations [J].
Bashkirtseva, Irina ;
Ryashko, Lev ;
Lopez, Alvaro G. ;
Seoane, Jesus M. ;
Sanjuan, Miguel A. F. .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2020, 30 (12)
[4]   On the foundations of cancer modelling: Selected topics, speculations, and perspectives [J].
Bellomo, N. ;
Li, N. K. ;
Maini, P. K. .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2008, 18 (04) :593-646
[5]   A validated mathematical model of cell-mediated immune response to tumor growth [J].
de Pillis, LG ;
Radunskaya, AE ;
Wiseman, CL .
CANCER RESEARCH, 2005, 65 (17) :7950-7958
[6]   The dynamics of an optimally controlled tumor model: A case study [J].
De Pillis, LG ;
Radunskaya, A .
MATHEMATICAL AND COMPUTER MODELLING, 2003, 37 (11) :1221-1244
[7]   Mathematical model of brain tumour with glia-neuron interactions and chemotherapy treatment [J].
Iarosz, Kelly C. ;
Borges, Fernando S. ;
Batista, Antonio M. ;
Baptista, Murilo S. ;
Siqueira, Regiane A. N. ;
Viana, Ricardo L. ;
Lopes, Sergio R. .
JOURNAL OF THEORETICAL BIOLOGY, 2015, 368 :113-121
[8]   CHAOS IN A THREE-DIMENSIONAL CANCER MODEL [J].
Itik, Mehmet ;
Banks, Stephen P. .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2010, 20 (01) :71-79
[9]   NONLINEAR DYNAMICS OF IMMUNOGENIC TUMORS - PARAMETER-ESTIMATION AND GLOBAL BIFURCATION-ANALYSIS [J].
KUZNETSOV, VA ;
MAKALKIN, IA ;
TAYLOR, MA ;
PERELSON, AS .
BULLETIN OF MATHEMATICAL BIOLOGY, 1994, 56 (02) :295-321
[10]   A Validated Mathematical Model of Tumor Growth Including Tumor-Host Interaction, Cell-Mediated Immune Response and Chemotherapy [J].
Lopez, Alvaro G. ;
Seoane, Jesus M. ;
Sanjuan, Miguel A. F. .
BULLETIN OF MATHEMATICAL BIOLOGY, 2014, 76 (11) :2884-2906