Characterisation of embeddings in Lorentz spaces

被引:21
作者
Gogatishvili, A.
Johansson, M.
Okpoti, C. A.
Persson, L.-E.
机构
[1] Acad Sci Czech Republ, Inst Math, Prague 11567, Czech Republic
[2] Lulea Univ Technol, Dept Math, S-95187 Lulea, Sweden
[3] Univ Educ, Dept Math, Winneba, Ghana
关键词
D O I
10.1017/S0004972700039484
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Some new integral conditions characterising the embedding Lambda(p) -> Gamma(q)(w), 0 < p, q <= infinity are presented, including proofs also for the cases (i) p = infinity, 0 < q <infinity, (ii) q = infinity, 1 < p < infinity and (iii) p = q = infinity. Only one condition is necessary for each case which means that our conditions are different from and simpler than other corresponding conditions in the literature. We even prove our results in a more general frame namely when the space Gamma(q)(w)(w) is replaced by the more general space Gamma(q)(u)(w)(w). In our proof we use a technique of discretisation and anti-discretisation developed by A. Gogatishvili and L. Pick, where they considered the opposite embedding.
引用
收藏
页码:69 / 92
页数:24
相关论文
共 21 条
[1]   MAXIMAL FUNCTIONS ON CLASSICAL LORENTZ SPACES AND HARDY INEQUALITY WITH WEIGHTS FOR NONINCREASING FUNCTIONS [J].
ARINO, MA ;
MUCKENHOUPT, B .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1990, 320 (02) :727-735
[2]  
Bennett C., 1988, PURE APPL MATH, V129
[3]   On embeddings between classical Lorentz spaces [J].
Carro, M ;
Pick, L ;
Soria, J ;
Stepanov, VD .
MATHEMATICAL INEQUALITIES & APPLICATIONS, 2001, 4 (03) :397-428
[4]   Weak-type weights and normable Lorentz spaces [J].
Carro, MJ ;
DelAmo, AG ;
Soria, J .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 124 (03) :849-857
[5]   The Hardy-Littlewood maximal function and weighted Lorentz spaces [J].
Carro, MJ ;
Soria, J .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1997, 55 :146-158
[6]   WEIGHTED LORENTZ SPACES AND THE HARDY OPERATOR [J].
CARRO, MJ ;
SORIA, J .
JOURNAL OF FUNCTIONAL ANALYSIS, 1993, 112 (02) :480-494
[7]   BOUNDEDNESS OF SOME INTEGRAL-OPERATORS [J].
CARRO, MJ ;
SORIA, J .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1993, 45 (06) :1155-1166
[8]   Embeddings and duality theorems for weak classical Lorentz spaces [J].
Gogatishvili, A ;
Pick, L .
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2006, 49 (01) :82-95
[9]   Discretization and anti-discretization of rearrangement-invariant norms [J].
Gogatishvili, A ;
Pick, L .
PUBLICACIONS MATEMATIQUES, 2003, 47 (02) :311-358
[10]   Duality principles and reduction theorems [J].
Gogatishvili, A ;
Pick, L .
MATHEMATICAL INEQUALITIES & APPLICATIONS, 2000, 3 (04) :539-558