A family of generalized quantum entropies: definition and properties

被引:41
作者
Bosyk, G. M. [1 ]
Zozor, S. [2 ]
Holik, F. [1 ]
Portesi, M. [1 ]
Lamberti, P. W. [3 ]
机构
[1] Univ Nacl La Plata, Inst Fis La Plata, CONICET, Fac Ciencias Exactas, Calle 115 & 49, RA-1900 La Plata, Buenos Aires, Argentina
[2] CNRS, Lab Grenoblois Image Parole Signal & Automat, 11 Rue Math, F-38402 St Martin Dheres, France
[3] UNC, Fac Matemat Astron & Fis, CONICET, Ave Medina Allende S-N,Ciudad Univ, Cordoba, Argentina
关键词
Quantum entropies; Majorization relation; Entanglement detection; ENTANGLEMENT; INEQUALITIES; CONVEXITY; STATES; FORMULATION; RENYI;
D O I
10.1007/s11128-016-1329-5
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present a quantum version of the generalized -entropies, introduced by SalicrA(0) et al. for the study of classical probability distributions. We establish their basic properties and show that already known quantum entropies such as von Neumann, and quantum versions of R,nyi, Tsallis, and unified entropies, constitute particular classes of the present general quantum SalicrA(0) form. We exhibit that majorization plays a key role in explaining most of their common features. We give a characterization of the quantum -entropies under the action of quantum operations and study their properties for composite systems. We apply these generalized entropies to the problem of detection of quantum entanglement and introduce a discussion on possible generalized conditional entropies as well.
引用
收藏
页码:3393 / 3420
页数:28
相关论文
共 86 条
[1]   Nonadditive conditional entropy and its significance for local realism [J].
Abe, S ;
Rajagopal, AK .
PHYSICA A, 2001, 289 (1-2) :157-164
[2]   Quantum data processing [J].
Ahlswede, R ;
Löber, P .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2001, 47 (01) :474-478
[3]  
[Anonymous], 1932, Publ. Inst. Math.
[4]  
[Anonymous], 2013, Matrix Analysis
[5]  
[Anonymous], 1967, KYBERNETIKA
[6]  
[Anonymous], 1967, Stud. Sci. Math. Hung.
[7]  
[Anonymous], 1957, Mathematical foundations of information theory
[8]  
[Anonymous], 2009, CAUCHYS EQUATION JEN
[9]  
[Anonymous], 2009, INTRO NONEXTENSIVE S, DOI DOI 10.1007/978-0-387-85359-8
[10]   Subadditivity of q-entropies for q>1 [J].
Audenaert, Koenraad M. R. .
JOURNAL OF MATHEMATICAL PHYSICS, 2007, 48 (08)