Chemical vapour deposition enhanced by atmospheric microwave plasmas: a large-scale industrial process or the next nanomanufacturing tool?

被引:18
作者
Belmonte, T. [1 ]
Gries, T. [1 ]
Cardoso, R. P. [1 ]
Arnoult, G. [1 ]
Kosior, F. [1 ]
Henrion, G. [1 ]
机构
[1] Nancy Univ, CNRS, Inst Jean Lamour, Dept Phys & Chem Solids & Surfaces, F-54042 Nancy, France
关键词
PRESSURE; PECVD; FILMS; DISCHARGE; OXIDE;
D O I
10.1088/0963-0252/20/2/024004
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
This paper describes several specific aspects of atmospheric plasma deposition carried out with a microwave resonant cavity. Deposition over a wide substrate is first studied. We show that high deposition rates (several hundreds of mu m h(-1)) are due to localization of fluxes on the substrate by convection when slightly turbulent flows are used. Next, we describe possible routes to localize deposition over a nanometre-sized area. Scaling down atmospheric plasma deposition is possible and two strategies to reach nanometre scales are described. Finally, we study self-organization of SiO(2) nanodots deposited by chemical vapour deposition at atmospheric pressure enhanced by an Ar-O(2) micro-afterglow operating at high temperature (>1200 K). When the film being deposited is thin enough (similar to 500 nm) nanodots are obtained and they can be assembled into threads to create patterned surfaces. When the coating becomes thicker (similar to 1 mu m), and for relatively high content in HMDSO, SiO(2) walls forming hexagonal cells are obtained.
引用
收藏
页数:7
相关论文
共 38 条
[1]   Remote AP-PECVD of silicon dioxide films from hexamethyldisiloxane (HMDSO) [J].
Alexandrov, SE ;
McSporran, N ;
Hitchman, ML .
CHEMICAL VAPOR DEPOSITION, 2005, 11 (11-12) :481-490
[2]   Chemical vapor deposition enhanced by atmospheric pressure non-thermal non-equilibrium plasmas [J].
Alexandrov, SE ;
Hitchman, ML .
CHEMICAL VAPOR DEPOSITION, 2005, 11 (11-12) :457-468
[3]   Self-organization of SiO2 nanodots deposited by chemical vapor deposition using an atmospheric pressure remote microplasma [J].
Arnoult, G. ;
Belmonte, T. ;
Henrion, G. .
APPLIED PHYSICS LETTERS, 2010, 96 (10)
[4]   Flow transition in a small scale microwave plasma jet at atmospheric pressure [J].
Arnoult, G. ;
Cardoso, R. P. ;
Belmonte, T. ;
Henrion, G. .
APPLIED PHYSICS LETTERS, 2008, 93 (19)
[5]  
BABAYAN SE, 2001, Technol, V10, P1
[6]   Plasma-enhanced chemical vapor deposition of zinc oxide at atmospheric pressure and low temperature [J].
Barankin, M. D. ;
Gonzalez, E., II ;
Ladwig, A. M. ;
Hicks, R. F. .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2007, 91 (10) :924-930
[7]   Characterisation of thin silica films deposited on carbon fibre by an atmospheric pressure non-equilibrium plasma (APNEP) [J].
Brown, M ;
Hayes, P ;
Prangnell, P .
COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2002, 33 (10) :1403-1408
[8]   Analysis of mass transport in an atmospheric pressure remote plasma-enhanced chemical vapor deposition process [J].
Cardoso, R. P. ;
Belmonte, T. ;
Henrion, G. ;
Gries, T. ;
Tixhon, E. .
JOURNAL OF APPLIED PHYSICS, 2010, 107 (02)
[9]  
CARDOSO RP, THIN SOLID IN PRESS, P24002
[10]   Long-range ordering of oxygen-vacancy planes in α-Fe2O3 nanowires and nanobelts [J].
Chen, Zhiqiang ;
Cvelbar, Uros ;
Mozetic, Miran ;
He, Jiaqing ;
Sunkara, Mahendra K. .
CHEMISTRY OF MATERIALS, 2008, 20 (09) :3224-3228