Comparing predictions from constitutive equations and artificial neural network model of compressive behavior in carbon nanotube-aluminum reinforced ZA27 composites

被引:2
作者
Liu, Yang [1 ]
Zhu, Yunke [1 ]
Geng, Cong [1 ]
Xu, Junrui [1 ]
机构
[1] Xiangtan Univ, Sch Mech Engn, Xiangtan 411105, Peoples R China
关键词
Zinc-aluminum matrix composites; Carbon nanotubes; Flow behavior; Artificial neural network; Constitutive equation; HOT DEFORMATION-BEHAVIOR; TEMPERATURE FLOW-STRESS; LOW-ALLOY STEEL; MICROSTRUCTURAL EVOLUTION; ELEVATED-TEMPERATURES; MECHANICAL-PROPERTIES; MATRIX COMPOSITES; STRAIN;
D O I
10.3139/146.111388
中图分类号
TF [冶金工业];
学科分类号
0806 ;
摘要
Hybrid carbon nanotube-aluminum reinforced ZA27 composites under hot compressive forces were investigated in the temperature range of 473 - 523 K with strain rates of 0.01-10 s(-1). From the experimental data, the flow stress curves for increasing strain exhibit typical flow behavior associated with dynamic recrystallization softening. A comparison of predictions from an artificial neural network model and the constitutive equations to describe the hot compressive behavior was performed. Relative errors varied from -4.14% to 6.75% for the artificial neural network model and from -15.93% to 17.29% using the constitutive equations. The results indicate that the artificial neural network model was more accurate and efficient in predicting hot compressive behavior.
引用
收藏
页码:659 / 667
页数:9
相关论文
共 31 条
[1]   Constitutive equations for elevated temperature flow stress of Ti-6Al-4V alloy considering the effect of strain [J].
Cai, Jun ;
Li, Fuguo ;
Liu, Taiying ;
Chen, Bo ;
He, Min .
MATERIALS & DESIGN, 2011, 32 (03) :1144-1151
[2]   Reinforcement with carbon nanotubes in aluminum matrix composites [J].
Choi, H. J. ;
Kwon, G. B. ;
Lee, G. Y. ;
Bae, D. H. .
SCRIPTA MATERIALIA, 2008, 59 (03) :360-363
[3]   Grain size effect on the strengthening behavior of aluminum-based composites containing multi-walled carbon nanotubes [J].
Choi, H. J. ;
Shin, J. H. ;
Bae, D. H. .
COMPOSITES SCIENCE AND TECHNOLOGY, 2011, 71 (15) :1699-1705
[4]   Effect of carbon nanotube (CNT) content on the mechanical properties of CNT-reinforced aluminium composites [J].
Esawi, A. M. K. ;
Morsi, K. ;
Sayed, A. ;
Tahera, M. ;
Lanka, S. .
COMPOSITES SCIENCE AND TECHNOLOGY, 2010, 70 (16) :2237-2241
[5]   Ductility improvement and fatigue studies in Mg-CNT nanocomposites [J].
Goh, C. S. ;
Wei, J. ;
Lee, L. C. ;
Gupta, M. .
COMPOSITES SCIENCE AND TECHNOLOGY, 2008, 68 (06) :1432-1439
[6]   Enhancing tensile and compressive strength of magnesium using ball milled Al plus CNT reinforcement [J].
Habibi, M. K. ;
Hamouda, A. M. S. ;
Gupta, M. .
COMPOSITES SCIENCE AND TECHNOLOGY, 2012, 72 (02) :290-298
[7]   Using integrated hybrid (Al plus CNT) reinforcement to simultaneously enhance strength and ductility of magnesium [J].
Habibi, M. K. ;
Paramsothy, M. ;
Hamouda, A. M. S. ;
Gupta, M. .
COMPOSITES SCIENCE AND TECHNOLOGY, 2011, 71 (05) :734-741
[8]   Constitutive modeling for hot deformation behavior of ZA27 alloy [J].
Li, H. Y. ;
Liu, Y. ;
Lu, X. C. ;
Su, X. J. .
JOURNAL OF MATERIALS SCIENCE, 2012, 47 (14) :5411-5418
[9]   Strain-dependent constitutive analysis of extruded AZ61 Mg alloy under hot compression [J].
Liao, Ching-hao ;
Wu, Horng-yu ;
Lee, Shyong ;
Zhu, Feng-jun ;
Liu, Hsu-cheng ;
Wu, Cheng-tao .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2013, 565 :1-8
[10]   Prediction of metadynamic softening in a multi-pass hot deformed low alloy steel using artificial neural network [J].
Lin, Y. C. ;
Fang, Xiaoling ;
Wang, Y. P. .
JOURNAL OF MATERIALS SCIENCE, 2008, 43 (16) :5508-5515