In-vivo dynamic characterization of microneedle skin penetration using optical coherence tomography

被引:84
作者
Enfield, Joey [1 ,2 ]
O'Connell, Marie-Louise [1 ,2 ]
Lawlor, Kate [1 ,2 ]
Jonathan, Enock [1 ,2 ]
O'Mahony, Conor [3 ]
Leahy, Martin [1 ,2 ,4 ]
机构
[1] Univ Limerick, Dept Phys, Limerick, Ireland
[2] Tissue Opt & Microcirculat Imaging Facil, Limerick, Ireland
[3] Tyndall Natl Inst, Microsyst Ctr, Cork, Ireland
[4] Royal Coll Surgeons Ireland, Dublin 2, Ireland
关键词
microneedles; optical coherence tomography; skin; penetration depth; in vivo; TRANSDERMAL DRUG-DELIVERY; MICROFABRICATED MICRONEEDLES; SILICON MICRONEEDLES; STRATUM-CORNEUM; THICKNESS; PAIN;
D O I
10.1117/1.3463002
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The use of microneedles as a method of circumventing the barrier properties of the stratum corneum is receiving much attention. Although skin disruption technologies and subsequent transdermal diffusion rates are being extensively studied, no accurate data on depth and closure kinetics of microneedle-induced skin pores are available, primarily due to the cumbersome techniques currently required for skin analysis. We report on the first use of optical coherence tomography technology to image microneedle penetration in real time and in vivo. We show that optical coherence tomography (OCT) can be used to painlessly measure stratum corneum and epidermis thickness, as well as microneedle penetration depth after microneedle insertion. Since OCT is a real-time, in-vivo, nondestructive technique, we also analyze skin healing characteristics and present quantitative data on micropore closure rate. Two locations (the volar forearm and dorsal aspect of the fingertip (have been assessed as suitable candidates for microneedle administration. The results illustrate the applicability of OCT analysis as a tool for microneedle-related skin characterization. (C) 2010 Society of Photo-Optical Instrumentation Engineers. [DOI: 10.1117/1.3463002]
引用
收藏
页数:7
相关论文
共 34 条
[1]   Three-dimensional endomicroscopy of the human colon using optical coherence tomography [J].
Adler, Desmond C. ;
Zhou, Chao ;
Tsai, Tsung-Han ;
Schmitt, Joe ;
Huang, Qin ;
Mashimo, Hiroshi ;
Fujimoto, James G. .
OPTICS EXPRESS, 2009, 17 (02) :784-796
[2]   In vivo visualization of microneedle conduits in human skin using laser scanning microscopy [J].
Bal, S. ;
Kruithof, A. C. ;
Liebl, H. ;
Tomerius, M. ;
Bouwstra, J. ;
Lademann, J. ;
Meinke, M. .
LASER PHYSICS LETTERS, 2010, 7 (03) :242-246
[3]   Microfabricated silicon microneedles for nonviral cutaneous gene delivery [J].
Chabri, F ;
Bouris, K ;
Jones, T ;
Barrow, D ;
Hann, A ;
Allender, C ;
Brain, K ;
Birchall, J .
BRITISH JOURNAL OF DERMATOLOGY, 2004, 150 (05) :869-877
[4]   Characterization of surface micromachined metallic microneedles [J].
Chandrasekaran, S ;
Frazier, AB .
JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, 2003, 12 (03) :289-295
[5]  
CHEN Y, 2008, BIOMEDICAL OPTICS BI
[6]   Hollow metal microneedles for insulin delivery to diabetic rats [J].
Davis, SP ;
Martanto, W ;
Allen, MG ;
Prausnitz, MR .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2005, 52 (05) :909-915
[7]   Insertion of microneedles into skin: measurement and prediction of insertion force and needle fracture force [J].
Davis, SP ;
Landis, BJ ;
Adams, ZH ;
Allen, MG ;
Prausnitz, MR .
JOURNAL OF BIOMECHANICS, 2004, 37 (08) :1155-1163
[8]   In vivo estimation of stratum corneum thickness from water concentration profiles obtained with Raman spectroscopy [J].
Egawa, Mariko ;
Hirao, Tetsuji ;
Takahashi, Motoji .
ACTA DERMATO-VENEREOLOGICA, 2007, 87 (01) :4-8
[9]  
Fercher AF, 2003, REP PROG PHYS, V66, P239, DOI 10.2184/lsj.31.635
[10]   Clinical administration of microneedles: skin puncture, pain and sensation [J].
Haq, M. I. ;
Smith, E. ;
John, D. N. ;
Kalavala, M. ;
Edwards, C. ;
Anstey, A. ;
Morrissey, A. ;
Birchall, J. C. .
BIOMEDICAL MICRODEVICES, 2009, 11 (01) :35-47