Asymptotic behaviour of large solutions of an elliptic quasilinear equation in a borderline case

被引:38
作者
Giarrusso, E [1 ]
机构
[1] Univ Naples Federico II, Dipartimento Matemat & Appl R Caccioppoli, I-80126 Naples, Italy
来源
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE | 2000年 / 331卷 / 10期
关键词
D O I
10.1016/S0764-4442(00)01707-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given a bounded smooth domain Omega in R-N, We study the asymptotic behaviour close to the boundary partial derivative Omega of the large solutions of the equation Deltau - /Du/(q) = f(u), where 1 < q < 2 and f(u)u(q/(q-2)) converges to a positive number, as u tends to infinity. Existence and asymptotic behaviour of large solutions of this equation are studied also in [2] for a general f(u). However, the assumptions considered in [2] do not apply to the case studied in this Note. As a consequence of the asymptotic behaviour we also show an uniqueness result. (C) 2000 Academie des sciences/Editions scientifiques et medicales Elsevier SAS.
引用
收藏
页码:777 / 782
页数:6
相关论文
共 12 条
[1]   ASYMPTOTIC-BEHAVIOR OF SOLUTIONS AND THEIR DERIVATIVES, FOR SEMILINEAR ELLIPTIC PROBLEMS WITH BLOWUP ON THE BOUNDARY [J].
BANDLE, C ;
MARCUS, M .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1995, 12 (02) :155-171
[2]   LARGE SOLUTIONS OF SEMILINEAR ELLIPTIC-EQUATIONS - EXISTENCE, UNIQUENESS AND ASYMPTOTIC-BEHAVIOR [J].
BANDLE, C ;
MARCUS, M .
JOURNAL D ANALYSE MATHEMATIQUE, 1992, 58 :9-24
[3]  
Bandle C, 1997, B UNIONE MAT ITAL, V11B, P227
[4]  
BANDLE C, 1994, SYM MATH, V35, P93
[5]  
BANDLE C, 1994, WSS APPL AN, V3, P59
[6]  
Bandle C., 1996, Adv. Differential Equations, V1, P133
[7]  
Giarrusso E, 2000, MATH NACHR, V213, P89, DOI 10.1002/(SICI)1522-2616(200005)213:1<89::AID-MANA89>3.0.CO
[8]  
2-1
[9]  
GIARRUSSO E, BOUNDARY BEHAV SOLUT
[10]   NONLINEAR ELLIPTIC-EQUATIONS WITH SINGULAR BOUNDARY-CONDITIONS AND STOCHASTIC-CONTROL WITH STATE CONSTRAINTS .1. THE MODEL PROBLEM [J].
LASRY, JM ;
LIONS, PL .
MATHEMATISCHE ANNALEN, 1989, 283 (04) :583-630