A new clustering algorithm for categorical attributes

被引:2
作者
Lu, SF [1 ]
Lu, ZD [1 ]
机构
[1] Huazhong Univ Sci & Technol, Coll Comp Sci & Technol, Wuhan 430074, Peoples R China
来源
JOURNAL OF UNIVERSITY OF SCIENCE AND TECHNOLOGY BEIJING | 2000年 / 7卷 / 04期
关键词
data mining; clustering; similarity;
D O I
暂无
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In traditional data clustering, similarity of a cluster of objects is measured by distance between objects. Such measures are not appropriate for categorical data. A new clustering criterion to determine the similarity between points with categorical attributes is presented. Furthermore, a new clustering algorithm for categorical attributes is addressed. A single scan of the dataset yields a good clustering, and more additional passes can be used to improve the quality further.
引用
收藏
页码:318 / 322
页数:5
相关论文
共 5 条
[1]  
Ester M, 1996, 2 INT C KNOWL DISCOV, P226, DOI DOI 10.5555/3001460.3001507
[2]   ROCK: A robust clustering algorithm for categorical attributes [J].
Guha, S ;
Rastogi, R ;
Shim, K .
15TH INTERNATIONAL CONFERENCE ON DATA ENGINEERING, PROCEEDINGS, 1999, :512-521
[3]  
HAN E, 1997, 1997 SIGMIOD WORKSH
[4]  
Ng R.T., 1994, P 20 VLDB C SANT CHI, P144
[5]   BIRCH: A new data clustering algorithm and its applications [J].
Zhang, T ;
Ramakrishnan, R ;
Livny, M .
DATA MINING AND KNOWLEDGE DISCOVERY, 1997, 1 (02) :141-182