Porous Transport Layers for Proton Exchange Membrane Electrolysis Under Extreme Conditions of Current Density, Temperature, and Pressure

被引:147
|
作者
Stiber, Svenja [1 ]
Balzer, Harald [2 ]
Wierhake, Astrid [2 ]
Wirkert, Florian Josef [3 ]
Roth, Jeffrey [3 ]
Rost, Ulrich [3 ,6 ]
Brodmann, Michael [3 ]
Lee, Jason Keonhag [4 ]
Bazylak, Aimy [4 ]
Waiblinger, Wendelin [1 ]
Gago, Aldo Sau [1 ]
Friedrich, Kaspar Andreas [1 ,5 ]
机构
[1] German Aerosp Ctr DLR, Inst Tech Thermodynam Electrochem Energy Technol, Pfaffenwaldring 38-40, D-70569 Stuttgart, Germany
[2] GKN Sinter Met Filters GmbH, Dahlienstr 43, D-42477 Radevormwald, Germany
[3] Westfal Hsch Univ Appl Sci, Westfal Energieinst, Neidenburger Str 43, D-45897 Gelsenkirchen, Germany
[4] Univ Toronto, Fac Appl Sci & Engn, Dept Mech & Ind Engn, Toronto, ON M5S 3G8, Canada
[5] Univ Stuttgart, Inst Bldg Energet Thermotechnol & Energy Storage, D-70550 Stuttgart, Germany
[6] ProPuls GmbH, Neidenburger Str 10, D-45897 Gelsenkirchen, Germany
基金
欧盟地平线“2020”; 加拿大自然科学与工程研究理事会;
关键词
high current density; high pressure; high temperature; PEM electrolysis; porous transport layers; LIQUID/GAS DIFFUSION LAYERS; WATER ELECTROLYSIS; STRUCTURAL-PROPERTIES; PERFORMANCE; GAS;
D O I
10.1002/aenm.202100630
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Hydrogen produced via water electrolysis powered by renewable electricity or green H-2 offers new decarbonization pathways. Proton exchange membrane water electrolysis (PEMWE) is a promising technology although the current density, temperature, and H-2 pressure of the PEMWE will have to be increased substantially to curtail the cost of green H-2. Here, a porous transport layer for PEMWE is reported, that enables operation at up to 6 A cm(-2), 90 degrees C, and 90 bar H-2 output pressure. It consists of a Ti porous sintered layer (PSL) on a low-cost Ti mesh (PSL/mesh-PTL) by diffusion bonding. This novel approach does not require a flow field in the bipolar plate. When using the mesh-PTL without PSL, the cell potential increases significantly due to mass transport losses reaching ca. 2.5 V at 2 A cm(-2) and 90 degrees C. On the other hand, the PEMWE with the PSL/mesh-PTL has the same cell potential but at 6 A cm(-2), thus increasing substantially the operation range of the electrolyzer. Extensive physical characterization and pore network simulation demonstrate that the PSL/mesh-PTL leads to efficient gas/water management in the PEMWE. Finally, the PSL/mesh-PTL is validated in an industrial size PEMWE in a container operating at 90 bar H-2 output pressure.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Porous Transport Layers with TiC-Coated Microporous Layers for Proton Exchange Membrane Water Electrolysis
    Deng, Tong
    Huang, Henghui
    Fan, Li
    Xu, Shaoyi
    Li, Hui
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2023, 11 (48) : 17075 - 17085
  • [2] Effects of various parameters of different porous transport layers in proton exchange membrane water electrolysis
    Kang, Zhenye
    Alia, Shaun M.
    Young, James L.
    Bender, Guido
    ELECTROCHIMICA ACTA, 2020, 354
  • [3] Characterization of Porous Transport Layers Towards the Development of Efficient Proton Exchange Membrane Water Electrolysis
    Stelmacovich, Genevieve
    Pylypenko , Svitlana
    CHEMELECTROCHEM, 2024, 11 (20):
  • [4] Optimizing oxygen transport in proton exchange membrane water electrolysis through tailored porosity configurations of porous transport layers
    Li, Qing
    He, Yuting
    Zhang, Luteng
    Pan, Liangming
    Sun, Wan
    Ma, Zaiyong
    Zhu, Longxiang
    Lian, Qiang
    Tang, Simiao
    APPLIED ENERGY, 2024, 370
  • [5] Degradation of Proton Exchange Membrane (PEM) Electrolysis: The Influence of Current Density
    Gago, A. S.
    Buerkle, J.
    Lettenmeier, P.
    Morawietz, T.
    Handl, M.
    Hiesgen, R.
    Burgraf, F.
    Valles, P. A.
    Friedrich, K. A.
    POLYMER ELECTROLYTE FUEL CELLS AND ELECTROLYZERS 18 (PEFC&E 18), 2018, 86 (13): : 695 - 700
  • [6] Femtosecond laser-induced surface structuring of the porous transport layers in proton exchange membrane water electrolysis
    Suermann, Michel
    Gimpel, Thomas
    Buehre, Lena, V
    Schade, Wolfgang
    Bensmann, Boris
    Hanke-Rauschenbach, Richard
    JOURNAL OF MATERIALS CHEMISTRY A, 2020, 8 (09) : 4898 - 4910
  • [7] Optimization of anode porous transport layer in proton exchange membrane water electrolysis
    Xu, Guizhi
    Du, Xiaoze
    Que, Liulin
    Zhang, Liang
    Li, Jun
    Ye, Dingding
    Song, Jie
    Gao, Jie
    APPLIED THERMAL ENGINEERING, 2025, 263
  • [8] Ultrathin Microporous Transport Layers: Implications for Low Catalyst Loadings, Thin Membranes, and High Current Density Operation for Proton Exchange Membrane Electrolysis
    Schuler, Tobias
    Weber, Carl Cesar
    Wrubel, Jacob A.
    Gubler, Lorenz
    Pivovar, Bryan
    Buchi, Felix N.
    Bender, Guido
    ADVANCED ENERGY MATERIALS, 2024, 14 (07)
  • [9] The porous transport layer in proton exchange membrane water electrolysis: perspectives on a complex component
    Yuan, Xiao-Zi
    Shaigan, Nima
    Song, Chaojie
    Aujla, Mantaj
    Neburchilov, Vladimir
    Kwan, Jason Tai Hong
    Wilkinson, David P.
    Bazylak, Aimy
    Fatih, Khalid
    SUSTAINABLE ENERGY & FUELS, 2022, 6 (08) : 1824 - 1853
  • [10] Proton delocalization under extreme conditions of high pressure and temperature
    Goncharov, Alexander F.
    Crowhurst, Jonathan
    PHASE TRANSITIONS, 2007, 80 (10-12) : 1051 - 1072