Self-Propelled Gemini-like LMWH-Scaffold Nanodrugs for Overall Tumor Microenvironment Manipulation via Macrophage Reprogramming and Vessel Normalization

被引:43
作者
Xu, Cheng [1 ,2 ]
Yang, Shan [1 ,2 ]
Jiang, Zhijie [1 ,2 ]
Zhou, Jianping [1 ,2 ]
Yao, Jing [1 ,2 ]
机构
[1] China Pharmaceut Univ, Dept Pharmaceut, State Key Lab Nat Med, 24 Tongjiaxiang, Nanjing 210009, Peoples R China
[2] China Pharmaceut Univ, Dept Pharmaceut, Jiangsu Key Lab Druggabil Biopharmaceut, 24 Tongjiaxiang, Nanjing 210009, Peoples R China
基金
中国国家自然科学基金;
关键词
Nanodrugs; tumor microenvironment; macrophage reprogramming; vessel normalization; low molecular weight heparin; CANCER; CELLS; NANOPARTICLE; DELIVERY; THERAPY; OPPORTUNITIES; ANGIOGENESIS; RADIATION; PROMISE;
D O I
10.1021/acs.nanolett.9b04024
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Angiogenesis is the hallmark of melanoma that nurtures the tumor microenvironment (TME) for rapid tumor progression. Vessel normalization could benefit melanoma treatment through TME reconstruction, while its limited duration and extent are still the drag. Herein, two kinds of look-like nanodrugs, called Gemini-like nanodrugs (GLnano), were constructed separately with the same scaffold of antiangiogenic low molecular weight heparin (LMWH) and mixed upon administration in vivo. For one, doxorubicin (DOX) was encapsulated into LMWH-chrysin nanodrug (LCY) with DSPE-PEG-anisamide decoration (D-LCA nanodrugs) for active targeting and direct cell killing toward melanoma cells. For another, matrix metalloproteinases (MMPs)-sensitive peptide was conjugated to LMVVH to encapsulate celecoxib (Cel) (C-Lpep nanodrugs), disassembling in TME by MMPs and releasing Cel for M2-to-M1 reprogramming of tumor-associated macrophages. Our results showed that GLnano could remarkably elongate the vessel normalization window up to 12 days with the highest pericyte coverage of nearly 75%, compared to only 4 days by LCY monotherapy. Furthermore, GLnano could spontaneously form the "treatment-delivery" loop to promote nanodrugs toward deep tumor regions, leading to a potent tumor inhibition, metastasis prevention, and overall TME improvements.
引用
收藏
页码:372 / 383
页数:12
相关论文
共 52 条
[1]   Current Challenges of Cancer Anti-angiogenic Therapy and the Promise of Nanotherapeutics [J].
Abdalla, Ahmed M. E. ;
Xiao, Lin ;
Ullah, Muhammad Wajid ;
Yu, Miao ;
Ouyang, Chenxi ;
Yang, Guang .
THERANOSTICS, 2018, 8 (02) :533-+
[2]   Combined antiangiogenic and anti-PD-L1 therapy stimulates tumor immunity through HEV formation [J].
Allen, Elizabeth ;
Jabouille, Arnaud ;
Rivera, Lee B. ;
Lodewijckx, Inge ;
Missiaen, Rindert ;
Steri, Veronica ;
Feyen, Kevin ;
Tawney, Jaime ;
Hanahan, Douglas ;
Michael, Iacovos P. ;
Bergers, Gabriele .
SCIENCE TRANSLATIONAL MEDICINE, 2017, 9 (385)
[3]   Bad company: Microenvironmentally mediated resistance to targeted therapy in melanoma [J].
Almeida, Filipe V. ;
Douglass, Stephen M. ;
Fane, Mitchell E. ;
Weeraratna, Ashani T. .
PIGMENT CELL & MELANOMA RESEARCH, 2019, 32 (02) :237-247
[4]   The effect of kinetic stability on biodistribution and anti-tumor efficacy of drug-loaded biodegradable polymeric micelles [J].
Attia, Amalina B. Ebrahim ;
Yang, Chuan ;
Tan, Jeremy P. K. ;
Gao, Shujun ;
Williams, David F. ;
Hedrick, James L. ;
Yang, Yi-Yan .
BIOMATERIALS, 2013, 34 (12) :3132-3140
[5]   Abnormalities of basement membrane on blood vessels and endothelial sprouts in tumors [J].
Baluk, P ;
Morikawa, S ;
Haskell, A ;
Mancuso, M ;
McDonald, DM .
AMERICAN JOURNAL OF PATHOLOGY, 2003, 163 (05) :1801-1815
[6]   Recent advances in anti-angiogenic nanomedicines for cancer therapy [J].
Bhattarai, Pravin ;
Hameed, Sadaf ;
Dai, Zhifei .
NANOSCALE, 2018, 10 (12) :5393-5423
[7]   T-helper-1-cell cytokines drive cancer into senescence [J].
Braumueller, Heidi ;
Wieder, Thomas ;
Brenner, Ellen ;
Assmann, Sonja ;
Hahn, Matthias ;
Alkhaled, Mohammed ;
Schilbach, Karin ;
Essmann, Frank ;
Kneilling, Manfred ;
Griessinger, Christoph ;
Ranta, Felicia ;
Ullrich, Susanne ;
Mocikat, Ralph ;
Braungart, Kilian ;
Mehra, Tarun ;
Fehrenbacher, Birgit ;
Berdel, Julia ;
Niessner, Heike ;
Meier, Friedegund ;
van den Broek, Maries ;
Haering, Hans-Ulrich ;
Handgretinger, Rupert ;
Quintanilla-Martinez, Leticia ;
Fend, Falko ;
Pesic, Marina ;
Bauer, Juergen ;
Zender, Lars ;
Schaller, Martin ;
Schulze-Osthoff, Klaus ;
Roecken, Martin .
NATURE, 2013, 494 (7437) :361-365
[8]   The Promise of Targeting Macrophages in Cancer Therapy [J].
Brown, J. Martin ;
Recht, Lawrence ;
Strober, Samuel .
CLINICAL CANCER RESEARCH, 2017, 23 (13) :3241-3250
[9]   Chloroquine modulates antitumor immune response by resetting tumor-associated macrophages toward M1 phenotype [J].
Chen, Degao ;
Xie, Jing ;
Fiskesund, Roland ;
Dong, Wenqian ;
Liang, Xiaoyu ;
Lv, Jiadi ;
Jin, Xun ;
Liu, Jinyan ;
Mo, Siqi ;
Zhang, Tianzhen ;
Cheng, Feiran ;
Zhou, Yabo ;
Zhang, Huafeng ;
Tang, Ke ;
Ma, Jingwei ;
Liu, Yuying ;
Huang, Bo .
NATURE COMMUNICATIONS, 2018, 9
[10]   Sequentially Responsive Therapeutic Peptide Assembling Nanoparticles for Dual-Targeted Cancer Immunotherapy [J].
Cheng, Keman ;
Ding, Yanping ;
Zhao, Ying ;
Ye, Shefang ;
Zhao, Xiao ;
Zhang, Yinlong ;
Ji, Tianjiao ;
Wu, Huanhuan ;
Wang, Bin ;
Anderson, Gregory J. ;
Ren, Lei ;
Nie, Guangjun .
NANO LETTERS, 2018, 18 (05) :3250-3258