Backward Particle Message Passing

被引:0
作者
Wymeersch, Henk [1 ]
Irukulapati, Naga V. [1 ]
Sackey, Isaac A. [1 ]
Johannisson, Pontus [1 ]
Agrell, Erik [1 ]
机构
[1] Chalmers Univ Technol, Gothenburg, Sweden
来源
2015 IEEE 16TH INTERNATIONAL WORKSHOP ON SIGNAL PROCESSING ADVANCES IN WIRELESS COMMUNICATIONS (SPAWC) | 2015年
关键词
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Particle methods are an established way to represent messages and perform message passing in factor graphs. Despite their common use, there are several cases for which messages are hard to compute, even in linear models. Building on results from Gaussian message passing, we demonstrate how backward particle-based messages can be computed and describe a practical application in the context of fiber-optical communications.
引用
收藏
页码:450 / 454
页数:5
相关论文
共 9 条
  • [1] Transforming variables using the Dirac generalized function
    Au, C
    Tam, J
    [J]. AMERICAN STATISTICIAN, 1999, 53 (03) : 270 - 272
  • [2] Regularized estimation of large covariance matrices
    Bickel, Peter J.
    Levina, Elizaveta
    [J]. ANNALS OF STATISTICS, 2008, 36 (01) : 199 - 227
  • [3] Particle methods as message passing
    Dauwels, Justin
    Korl, Sascha
    Loeliger, Hans-Andrea
    [J]. 2006 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, VOLS 1-6, PROCEEDINGS, 2006, : 2052 - +
  • [4] Irukulapati NV, 2014, 2014 EUROPEAN CONFERENCE ON OPTICAL COMMUNICATION (ECOC)
  • [5] Stochastic Digital Backpropagation
    Irukulapati, Naga V.
    Wymeersch, Henk
    Johannisson, Pontus
    Agrell, Erik
    [J]. IEEE TRANSACTIONS ON COMMUNICATIONS, 2014, 62 (11) : 3956 - 3968
  • [6] An introduction to factor graphs
    Loeliger, HA
    [J]. IEEE SIGNAL PROCESSING MAGAZINE, 2004, 21 (01) : 28 - 41
  • [7] The factor graph approach to model-based signal processing
    Loeliger, Hans-Andrea
    Dauwels, Justin
    Hu, Junli
    Korl, Sascha
    Ping, Li
    Kschischang, Frank R.
    [J]. PROCEEDINGS OF THE IEEE, 2007, 95 (06) : 1295 - 1322
  • [8] Density estimation
    Sheather, SJ
    [J]. STATISTICAL SCIENCE, 2004, 19 (04) : 588 - 597
  • [9] Sudderth EB, 2003, PROC CVPR IEEE, P605