Existence result for a third-order ODE with nonlinear boundary conditions in presence of a sign-type Nagumo control

被引:31
作者
Grossinho, MR
Minhós, FM
Santos, AI
机构
[1] Univ Evora, Dept Matemat & CIMA UE, P-7000671 Evora, Portugal
[2] Univ Tecn Lisboa, Dept Matemat, P-200781 Lisbon, Portugal
[3] Univ Lisbon, P-1649003 Lisbon, Portugal
关键词
third-order nonlinear boundary value problems; sign-type Nagumo condition; lower and upper solutions; A priori estimates; Leray-Schauder degree;
D O I
10.1016/j.jmaa.2005.01.030
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work we provide an existence and location result for the third-order nonlinear differential equation u'"(t) = f (t, u(t), ul(t), u'(t), u"(t)), where f : [a, b] x R-3 -> R is a continuous function, and two types of boundary conditions: u(a) = A, phi(u'(b), u"(b)) 0, u"(a) = B, or u(a) = A, psi(u'(a), u" (a)) 0, u"(b) = C, with phi, psi : R-2 -> R continuous functions, monotonous in the second variable and A, B, C E R. We assume that f satisfies a sign-type Nagumo condition which allows an asymmetric unbounded behaviour on the nonlinearity. The arguments used concern Leray-Schauder degree theory and lower and upper solutions technique. (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:271 / 283
页数:13
相关论文
共 17 条
[1]   Existence results for the problem (φ(u′))′=f(t,u,u′) with nonlinear boundary conditions [J].
Cabada, A ;
Pouso, RL .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1999, 35 (02) :221-231
[2]   Extremal solutions of strongly nonlinear discontinuous second-order equations with nonlinear functional boundary conditions [J].
Cabada, A ;
Pouso, RL .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2000, 42 (08) :1377-1396
[3]   On the solvability of some discontinuous third order nonlinear differential equations with two point boundary conditions [J].
Cabada, A ;
Grossinho, MD ;
Minhós, F .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2003, 285 (01) :174-190
[4]  
de Coster C., 1994, METHODE SOLUTIONS ET
[5]  
DECOSTER C, 1996, RECHERCHES MATH APR, P52
[6]   Existence of solutions for a class of third-order nonlinear boundary value problems [J].
Du, ZJ ;
Ge, WG ;
Lin, XJ .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2004, 294 (01) :104-112
[7]  
GROSSINHO M, 2001, EQUADIFF, V10, P183
[8]  
GROSSINHO M, MATUL200119 CMAF
[9]  
GROSSINHO M, IN PRESS NONLINEAR A
[10]  
GROSSINHO M, UNPUB SOLVABILITY SO