Mitochondrial genomic variation and phylogenetic relationships of three groups in the genus Scaphoideus (Hemiptera: Cicadellidae: Deltocephalinae)

被引:41
作者
Du, Yimin [1 ]
Dai, Wu [1 ]
Dietrich, Christopher H. [2 ]
机构
[1] Northwest A&F Univ, Coll Plant Protect, Minist Educ, Key Lab Plant Protect Resources & Pest Management, Yangling 712100, Shaanxi, Peoples R China
[2] Univ Illinois, Prairie Res Inst, Illinois Nat Hist Survey, 1816 S Oak St, Champaign, IL 61820 USA
基金
中国国家自然科学基金;
关键词
LEVEL PHYLOGENY; SOFTWARE; SEQUENCE; AUCHENORRHYNCHA; CICADOMORPHA; EVOLUTION;
D O I
10.1038/s41598-017-17145-z
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The widespread leafhopper genus Scaphoideus Uhler is the most diverse genus in Scaphoideini and includes some species that are serious pests and vectors of plant pathogens. Here the first Scaphoideus mitogenome sequences are provided for three species, S. maai, S. nigrivalveus and S. varius, representing three main species groups in the Oriental region based on color pattern. The lengths of these three mitogenomes were 15,188, 15,235 and 15,207 bp, respectively. Gene order of three mitogenomes is highly conserved and identical to that of the putative ancestral insect. All three mitogenomes exhibited similar AT nucleotide bias, AT-, GC-skews and codon usage. One large 101 bp intergenic spacer between trnY and cox1 was in S. varius. All 22 tRNA genes had typical cloverleaf secondary structures, except for trnS1 (AGN) which appears to lack the dihydrouridine arm. Genes atp8, nad6 and nad2 were highly variable while cox1 showed the lowest nucleotide diversity. Phylogenetic analyses of three concatenated nucleotide datasets using maximum likelihood and Bayesian methods, comprising all 13 mitogenomes currently available for Membracoidea plus mitogenomes for eight outgroup species representing other cicadomorphan superfamilies, yielded the same topology in which Scaphoideus species formed a monophyletic group within a larger clade comprising three other included Deltocephalinae.
引用
收藏
页数:10
相关论文
共 44 条
[1]   TranslatorX: multiple alignment of nucleotide sequences guided by amino acid translations [J].
Abascal, Federico ;
Zardoya, Rafael ;
Telford, Maximilian J. .
NUCLEIC ACIDS RESEARCH, 2010, 38 :W7-W13
[2]  
BALL E. D., 1932, JOUR WASHINGTON ACAD SCI, V22, P9
[3]   MITOS: Improved de novo metazoan mitochondrial genome annotation [J].
Bernt, Matthias ;
Donath, Alexander ;
Juehling, Frank ;
Externbrink, Fabian ;
Florentz, Catherine ;
Fritzsch, Guido ;
Puetz, Joern ;
Middendorf, Martin ;
Stadler, Peter F. .
MOLECULAR PHYLOGENETICS AND EVOLUTION, 2013, 69 (02) :313-319
[4]   Animal mitochondrial genomes [J].
Boore, JL .
NUCLEIC ACIDS RESEARCH, 1999, 27 (08) :1767-1780
[5]   Insect Mitochondrial Genomics: Implications for Evolution and Phylogeny [J].
Cameron, Stephen L. .
ANNUAL REVIEW OF ENTOMOLOGY, VOL 59, 2014, 2014, 59 :95-117
[6]  
DeLong D. M., 1939, Proceedings of the Entomological Society of Washington, V41, P33
[7]  
Dietrich CH, 2017, INSECT SYST DIVER, V1, DOI 10.1093/isd/ixx003
[8]   Reconstructing mitochondrial genomes directly from genomic next-generation sequencing reads-a baiting and iterative mapping approach [J].
Hahn, Christoph ;
Bachmann, Lutz ;
Chevreux, Bastien .
NUCLEIC ACIDS RESEARCH, 2013, 41 (13) :e129
[9]   Barcoding animal life:: cytochrome c oxidase subunit 1 divergences among closely related species [J].
Hebert, PDN ;
Ratnasingham, S ;
deWaard, JR .
PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2003, 270 :S96-S99
[10]   MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability [J].
Katoh, Kazutaka ;
Standley, Daron M. .
MOLECULAR BIOLOGY AND EVOLUTION, 2013, 30 (04) :772-780