Quantum semi-supervised kernel learning

被引:7
作者
Saeedi, Seyran [1 ,2 ]
Panahi, Aliakbar [2 ]
Arodz, Tom [2 ]
机构
[1] Univ Calif Santa Barbara, Dept Elect & Comp Engn, Santa Barbara, CA USA
[2] Virginia Commonwealth Univ, Dept Comp Sci, Richmond, VA 23284 USA
关键词
Quantum machine learning; Semi-supervised learning; Support vector machines; Quantum computing; Machine learning;
D O I
10.1007/s42484-021-00053-x
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Quantum machine learning methods have the potential to facilitate learning using extremely large datasets. While the availability of data for training machine learning models is steadily increasing, oftentimes it is much easier to collect feature vectors to obtain the corresponding labels. One of the approaches for addressing this issue is to use semi-supervised learning, which leverages not only the labeled samples, but also unlabeled feature vectors. Here, we present a quantum machine learning algorithm for training semi-supervised kernel support vector machines. The algorithm uses recent advances in quantum sample-based Hamiltonian simulation to extend the existing quantum LS-SVM algorithm to handle the semi-supervised term in the loss. Through a theoretical study of the algorithm's computational complexity, we show that it maintains the same speedup as the fully-supervised quantum LS-SVM.
引用
收藏
页数:11
相关论文
共 26 条
  • [11] Revisiting Power-law Distributions in Spectra of Real World Networks
    Eikmeier, Nicole
    Gleich, David F.
    [J]. KDD'17: PROCEEDINGS OF THE 23RD ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2017, : 817 - 826
  • [12] Gilyen Andras, 2018, ARXIV181104909
  • [13] Quantum Algorithm for Linear Systems of Equations
    Harrow, Aram W.
    Hassidim, Avinatan
    Lloyd, Seth
    [J]. PHYSICAL REVIEW LETTERS, 2009, 103 (15)
  • [14] Hamiltonian simulation with optimal sample complexity
    Kimmel, Shelby
    Lin, Cedric Yen-Yu
    Low, Guang Hao
    Ozols, Maris
    Yoder, Theodore J.
    [J]. NPJ QUANTUM INFORMATION, 2017, 3
  • [15] Li T., 2019, P 36 INT C MACH LEAR, P3815, DOI DOI 10.48550/ARXIV.1904.02276
  • [16] Lloyd S, 2014, NAT PHYS, V10, P631, DOI [10.1038/NPHYS3029, 10.1038/nphys3029]
  • [17] Melacci S, 2011, J MACH LEARN RES, V12, P1149
  • [18] Opportunities and challenges for quantum-assisted machine learning in near-term quantum computers
    Perdomo-Ortiz, Alejandro
    Benedetti, Marcello
    Realpe-Gomez, John
    Biswas, Rupak
    [J]. QUANTUM SCIENCE AND TECHNOLOGY, 2018, 3 (03):
  • [19] Quantum Support Vector Machine for Big Data Classification
    Rebentrost, Patrick
    Mohseni, Masoud
    Lloyd, Seth
    [J]. PHYSICAL REVIEW LETTERS, 2014, 113 (13)
  • [20] A generalized representer theorem
    Schölkopf, B
    Herbrich, R
    Smola, AJ
    [J]. COMPUTATIONAL LEARNING THEORY, PROCEEDINGS, 2001, 2111 : 416 - 426