Microscopic identification of dissipative modes in relativistic field theories

被引:1
作者
Saito, Yohei [1 ]
Fujii, Hirotsugu [2 ]
Itakura, Kazunori [1 ,3 ]
Morimatsu, Osamu [1 ,3 ,4 ]
机构
[1] High Energy Accelerator Res Org KEK, KEK Theory Ctr, IPNS, Tsukuba, Ibaraki 3050801, Japan
[2] Univ Tokyo, Inst Phys, Tokyo 1538902, Japan
[3] Grad Univ Adv Studies SOKENDAI, Dept Particle & Nucl Studies, Tsukuba, Ibaraki 3050801, Japan
[4] Univ Tokyo, Dept Phys, Fac Sci, Bunkyo Ku, Tokyo 1130033, Japan
关键词
RENORMALIZATION-GROUP METHODS; DYNAMIC CRITICAL PHENOMENA; ONE-PARTICLE EXCITATION; FINITE-TEMPERATURE; PHASE-TRANSITION; TRANSPORT-COEFFICIENTS; GREEN-FUNCTIONS; SCALING LAWS; DISCONTINUITIES; FLUCTUATIONS;
D O I
10.1093/ptep/ptv065
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present an argument to support the existence of dissipative modes in relativistic field theories. For an O(N) phi(4) theory in spatial dimension 1 <= d <= 3, the two-point function of phi is shown to develop a pole of the form p(0) similar to i Gamma(-1) (p(2) + m(2)) at small energy p(0) and momentum p, with a nonzero finite coefficient or relaxation constant, Gamma, when evaluated in the two-particle irreducible (2PI) framework at the next-leading order (NLO) of 1/N expansion. In contrast, an NLO calculation in the one-particle irreducible (1PI) framework fails to give a nonzero Gamma. The dissipative mode emerges from multiple scattering of a particle with other particles, which is appropriately treated in the 2PI-NLO calculation through the resummation of secular terms to improve the long-time behavior of the two-point function. Assuming that this slow dissipative mode survives at the critical point, one can identify the dynamic critical exponent z for the two-point function as z = 2 - eta. We also discuss possible improvement of the result.
引用
收藏
页数:21
相关论文
共 74 条
[11]   DETERMINATION OF THERMODYNAMIC GREENS FUNCTIONS [J].
BAYM, G ;
MERMIN, ND .
JOURNAL OF MATHEMATICAL PHYSICS, 1961, 2 (02) :232-&
[12]   CONSERVATION LAWS AND CORRELATION FUNCTIONS [J].
BAYM, G ;
KADANOFF, LP .
PHYSICAL REVIEW, 1961, 124 (02) :287-+
[13]   SELF-CONSISTENT APPROXIMATIONS IN MANY-BODY SYSTEMS [J].
BAYM, G .
PHYSICAL REVIEW, 1962, 127 (04) :1391-&
[14]  
Berges J, 2004, AIP CONF PROC, V739, P3, DOI 10.1063/1.1843591
[15]   Turbulent thermalization process in heavy-ion collisions at ultrarelativistic energies [J].
Berges, J. ;
Boguslavski, K. ;
Schlichting, S. ;
Venugopalan, R. .
PHYSICAL REVIEW D, 2014, 89 (07)
[16]   Dynamic critical phenomena from spectral functions on the lattice [J].
Berges, Juergen ;
Schlichting, Soeren ;
Sexty, Denes .
NUCLEAR PHYSICS B, 2010, 832 (1-2) :228-240
[17]   Turbulence in nonabelian gauge theory [J].
Berges, Juergen ;
Scheffler, Sebastian ;
Sexty, Denes .
PHYSICS LETTERS B, 2009, 681 (04) :362-366
[18]   The quark-gluon plasma: collective dynamics and hard thermal loops [J].
Blaizot, JP ;
Iancu, E .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2002, 359 (5-6) :355-528
[19]   Relaxing near the critical point [J].
Boyanovsky, D ;
de Vega, HJ ;
Simionato, M .
PHYSICAL REVIEW D, 2001, 63 (04)
[20]   Dynamical renormalization group approach to relaxation in quantum field theory [J].
Boyanovsky, D ;
de Vega, HJ .
ANNALS OF PHYSICS, 2003, 307 (02) :335-371