COMBINATION OF ARTIFICIAL NEURAL NETWORKS AND GENETIC ALGORITHM - GAMMA TEST METHOD IN PREDICTION OF ROAD TRAFFIC NOISE

被引:6
|
作者
Khouban, Leila [1 ]
Ghaiyoomi, Abbas Ali [2 ]
Teshnehlab, Mohammad [3 ]
Ashlaghi, Abbas Tolooei [4 ]
Abbaspour, Majid [5 ]
Nassiri, Parvin [6 ]
机构
[1] Islamic Azad Univ, Sci & Res Branch, Dept Environm & Energy, Tehran, Iran
[2] Islamic Azad Univ, North Branch, Dept Management & Human Sci, Tehran, Iran
[3] Khaje Nasir Toosi Univ Technol, Dept Elect & Elect Engn, Tehran, Iran
[4] Islamic Azad Univ, Dept Management & Human Sci, Tehran, Iran
[5] Sharif Univ Technol, Dept Engn Mech, Tehran, Iran
[6] Univ Tehran Med Sci, Sch Publ Hlth, Dept Occupat Hlth, Tehran, Iran
来源
Environmental Engineering and Management Journal | 2015年 / 14卷 / 04期
关键词
back propagation network; expert system; genetic algorithm; neural network modelling; noise pollution; GEOGRAPHICAL INFORMATION-SYSTEM; TIME-SERIES; MODEL; PARAMETERS; AREA;
D O I
10.30638/eemj.2015.089
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This paper proposes an expert system based on Artificial Neural Networks (ANNs) to model road traffic noise. Feed-Forward Neural Networks (FFNNs) that are trained with the Levenberg-Marquardt back-propagation algorithm were used. Models were evaluated using mean squared error (MSE) and coefficient of determination (R-2) as statistical performance parameters. In traffic noise modelling, the noise level at a receptor position due to the source of traffic emission is modelled as a function of the traffic conditions, road gradient, road dimensions, speed and height of buildings around the road. The curse of dimensionality problems is caused by the large number of input variables in the ANN model. The Hybrid Genetic Algorithm-Gamma Test (GA-GT) as a data pre-processing method for determining adequate model inputs was also evaluated. Genetic algorithms are frequently used for the selection of input variables, and, therefore, reduce the total number of predictors. Through the hybrid model, six out of twelve sets of predictor candidates were introduced as input variables in the ANN model. Comparing the results of the hybrid model (ANN-GA-GT) with those of the ANN model indicates that the hybrid model has more advantages, such as improving performance prediction, reducing the cost of future measurements and less computational and data storage requirements. Consequently, the ANN-GA-GAMMA model is recommended as a proper method for predicting traffic noise level.
引用
收藏
页码:801 / 808
页数:8
相关论文
共 50 条
  • [31] On-Road Sensor Configuration Design for Traffic Flow Prediction Using Fuzzy Neural Networks and Taguchi Method
    Chan, Kit Yan
    Dillon, Tharam S.
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2013, 62 (01) : 50 - 59
  • [32] Artificial neural network based on genetic algorithm for emissions prediction of a SI gasoline engine
    Martinez-Morales, Jose D.
    Palacios-Hernandez, Elvia R.
    Velazquez-Carrillo, Gerardo A.
    JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY, 2014, 28 (06) : 2417 - 2427
  • [33] Optimization of injection molding process parameters using combination of artificial neural network and genetic algorithm method
    Shen Changyu
    Wang Lixia
    Li Qian
    JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2007, 183 (2-3) : 412 - 418
  • [34] Improving Prediction Interval Quality: A Genetic Algorithm-Based Method Applied to Neural Networks
    Khosravi, Abbas
    Nahavandi, Saeid
    Creighton, Doug
    NEURAL INFORMATION PROCESSING, PT 2, PROCEEDINGS, 2009, 5864 : 141 - 149
  • [35] Prediction of bioconcentration factor using genetic algorithm and artificial neural network
    Fatemi, MH
    Jalali-Heravi, M
    Konuze, E
    ANALYTICA CHIMICA ACTA, 2003, 486 (01) : 101 - 108
  • [36] Optimized Channel Allocation Using Genetic Algorithm and Artificial Neural Networks
    Rajagopalan, Narendran
    Mala, C.
    Sridevi, M.
    Prasath, R. Hari
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON SOFT COMPUTING FOR PROBLEM SOLVING (SOCPROS 2011), VOL 1, 2012, 130 : 645 - 655
  • [37] AUTOMATIC MUSIC COMPOSITION USING GENETIC ALGORITHM AND ARTIFICIAL NEURAL NETWORKS
    Abu Doush, Iyad
    Sawalha, Ayah
    MALAYSIAN JOURNAL OF COMPUTER SCIENCE, 2020, 33 (01) : 35 - 51
  • [38] Bearing Fault Detection Using Artificial Neural Networks and Genetic Algorithm
    B Samanta
    Khamis R Al-Balushi
    Saeed A Al-Araimi
    EURASIP Journal on Advances in Signal Processing, 2004
  • [39] Bearing fault detection using artificial neural networks and genetic algorithm
    Samanta, B
    Al-Balushi, KR
    Al-Araimi, SA
    EURASIP JOURNAL ON APPLIED SIGNAL PROCESSING, 2004, 2004 (03) : 366 - 377
  • [40] PREDICTION OF THERMAL ERRORS IN MACHINE TOOLS THROUGH DECOUPLED SIMULATIONS USING GENETIC ALGORITHM AND ARTIFICIAL NEURAL NETWORKS
    Kumar, T. Suresh
    Glaenzel, J.
    Bergmann, M.
    Putz, M.
    MM SCIENCE JOURNAL, 2021, 2021 : 4683 - 4691