COMBINATION OF ARTIFICIAL NEURAL NETWORKS AND GENETIC ALGORITHM - GAMMA TEST METHOD IN PREDICTION OF ROAD TRAFFIC NOISE

被引:6
|
作者
Khouban, Leila [1 ]
Ghaiyoomi, Abbas Ali [2 ]
Teshnehlab, Mohammad [3 ]
Ashlaghi, Abbas Tolooei [4 ]
Abbaspour, Majid [5 ]
Nassiri, Parvin [6 ]
机构
[1] Islamic Azad Univ, Sci & Res Branch, Dept Environm & Energy, Tehran, Iran
[2] Islamic Azad Univ, North Branch, Dept Management & Human Sci, Tehran, Iran
[3] Khaje Nasir Toosi Univ Technol, Dept Elect & Elect Engn, Tehran, Iran
[4] Islamic Azad Univ, Dept Management & Human Sci, Tehran, Iran
[5] Sharif Univ Technol, Dept Engn Mech, Tehran, Iran
[6] Univ Tehran Med Sci, Sch Publ Hlth, Dept Occupat Hlth, Tehran, Iran
来源
Environmental Engineering and Management Journal | 2015年 / 14卷 / 04期
关键词
back propagation network; expert system; genetic algorithm; neural network modelling; noise pollution; GEOGRAPHICAL INFORMATION-SYSTEM; TIME-SERIES; MODEL; PARAMETERS; AREA;
D O I
10.30638/eemj.2015.089
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This paper proposes an expert system based on Artificial Neural Networks (ANNs) to model road traffic noise. Feed-Forward Neural Networks (FFNNs) that are trained with the Levenberg-Marquardt back-propagation algorithm were used. Models were evaluated using mean squared error (MSE) and coefficient of determination (R-2) as statistical performance parameters. In traffic noise modelling, the noise level at a receptor position due to the source of traffic emission is modelled as a function of the traffic conditions, road gradient, road dimensions, speed and height of buildings around the road. The curse of dimensionality problems is caused by the large number of input variables in the ANN model. The Hybrid Genetic Algorithm-Gamma Test (GA-GT) as a data pre-processing method for determining adequate model inputs was also evaluated. Genetic algorithms are frequently used for the selection of input variables, and, therefore, reduce the total number of predictors. Through the hybrid model, six out of twelve sets of predictor candidates were introduced as input variables in the ANN model. Comparing the results of the hybrid model (ANN-GA-GT) with those of the ANN model indicates that the hybrid model has more advantages, such as improving performance prediction, reducing the cost of future measurements and less computational and data storage requirements. Consequently, the ANN-GA-GAMMA model is recommended as a proper method for predicting traffic noise level.
引用
收藏
页码:801 / 808
页数:8
相关论文
共 50 条
  • [21] Prediction of soil wind erodibility using a hybrid Genetic algorithm - Artificial neural network method
    Kouchami-Sardoo, I
    Shirani, H.
    Esfandiarpour-Boroujeni, I
    Besalatpour, A. A.
    Hajabbasi, M. A.
    CATENA, 2020, 187
  • [22] Assessment of electromyograms using genetic algorithm and artificial neural networks
    Ambikapathy, Bakiya
    Kirshnamurthy, Kamalanand
    Venkatesan, Rajinikanth
    EVOLUTIONARY INTELLIGENCE, 2021, 14 (02) : 261 - 271
  • [23] MODIFICATION AND PARALLELIZATION OF GENETIC ALGORITHM FOR SYNTHESIS OF ARTIFICIAL NEURAL NETWORKS
    Leoshchenko, S. D.
    Oliinyk, A.
    Subbotin, S. A.
    Lytvyn, V. A.
    Shkarupylo, V. V.
    RADIO ELECTRONICS COMPUTER SCIENCE CONTROL, 2019, (04) : 68 - 82
  • [24] Artificial neural networks and genetic algorithm for bearing fault detection
    Samanta, B
    Al-Balushi, KR
    Al-Araimi, SA
    SOFT COMPUTING, 2006, 10 (03) : 264 - 271
  • [25] Artificial neural networks and genetic algorithm for bearing fault detection
    B. Samanta
    K. R. Al-Balushi
    S. A. Al-Araimi
    Soft Computing, 2006, 10 : 264 - 271
  • [26] Synthesis of Artificial Neural Networks Using a Modified Genetic Algorithm
    Leoshchenko, Serhii
    Oliinyk, Andrii
    Subbotin, Sergey
    Gorobii, Nataliia
    Zaiko, Tetiana
    PROCEEDINGS OF THE 1ST INTERNATIONAL WORKSHOP ON INFORMATICS & DATA- DRIVEN MEDICINE (IDDM 2018), 2018, 2255 : 1 - 13
  • [27] Structure Optimization of Slip by the Combination of Artificial Neural Network and Genetic Algorithm
    Li, Dianxin
    Zhao, Honglin
    Zhang, Shimin
    Geng, Dai
    Liu, Xianlong
    Zheng, Shanjun
    ADVANCES IN MECHANICAL DESIGN, PTS 1 AND 2, 2011, 199-200 : 1223 - +
  • [28] A genetic algorithm to refine input data selection for air temperature prediction using artificial neural networks
    Venkadesh, Siva
    Hoogenboom, Gerrit
    Potter, Walter
    McClendon, Ronald
    APPLIED SOFT COMPUTING, 2013, 13 (05) : 2253 - 2260
  • [29] The Prediction of Ventricular Fibrillation based upon HRV Signal Using Combination of Genetic Algorithm and Neural Networks
    Sedehi, Javid Farhadi
    Dabanloo, Nader Jafarnia
    Attarodi, Gholamreza
    Zadeh, Mehdi Eslami
    2017 COMPUTING IN CARDIOLOGY (CINC), 2017, 44
  • [30] Application Research of Genetic Algorithm and Artificial Neural Networks in the Prediction of Mine Water Gushing-out
    Dong Lili
    Qiao Yufeng
    Guo Xiaoshan
    2010 INTERNATIONAL CONFERENCE ON MANAGEMENT SCIENCE AND ENGINEERING (MSE 2010), VOL 3, 2010, : 164 - 168