A 13.56 MHz Wireless Power Transfer System With Reconfigurable Resonant Regulating Rectifier and Wireless Power Control for Implantable Medical Devices

被引:206
|
作者
Li, Xing [1 ]
Tsui, Chi-Ying [2 ]
Ki, Wing-Hung [2 ]
机构
[1] Hong Kong Univ Sci & Technol, VLSI Circuit Design Lab, Hong Kong, Hong Kong, Peoples R China
[2] Hong Kong Univ Sci & Technol, Dept Elect & Comp Engn, Hong Kong, Hong Kong, Peoples R China
关键词
Implantable medical devices; reconfigurable resonant regulating rectifier; wireless power control; Wireless power transfer;
D O I
10.1109/JSSC.2014.2387832
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A 13.56 MHz wireless power transfer system with a 1X/2X reconfigurable resonant regulating (R-3) rectifier and wireless power control for biomedical implants is presented. Output voltage regulation is achieved through two mechanisms: 1) a local PWM loop at the secondary side controls the duty cycle of mode-switching of the rectifier between the 1X and 2X modes; and 2) a global control loop obtains the mode-switching information from the secondary side and send it back to the primary side through the wireless channel and adjusts the transmitter power of the primary coil to adapt to load and coupling variations. Two novel backscattering uplink techniques are proposed for fast and energy-efficient data feedback. The first is for general data transmission using Manchester code; and the second is for fast duty cycle feedback to cater for fast load-transient responses. Stability analysis of the entire system with the two control loops is also presented. The primary transmitter and the secondary R-3 rectifier are fabricated in 0.35 mu m CMOS process with the digital control circuits implemented using FPGA. The measured maximum received power and receiver efficiency are 102 mW and 92.6%, respectively. For load transients, the overshoot and the undershoot are approximately 110 mV and the settling times are less than 130 mu s.
引用
收藏
页码:978 / 989
页数:12
相关论文
共 50 条
  • [41] A Review on Miniaturized Ultrasonic Wireless Power Transfer to Implantable Medical Devices
    Taalla, Rajesh V.
    Arefin, Md. Shamsul
    Kaynak, Akif
    Kouzani, Abbas Z.
    IEEE ACCESS, 2019, 7 : 2092 - 2106
  • [42] Tissue Variability and Antennas for Power Transfer to Wireless Implantable Medical Devices
    Bocan, Kara N.
    Mickle, Marlin H.
    Sejdic, Ervin
    IEEE JOURNAL OF TRANSLATIONAL ENGINEERING IN HEALTH AND MEDICINE, 2017, 5
  • [43] Active Rectifier Design and Synchronization Control for 6.78 MHz Wireless Power Transfer
    Pham, Peter
    Cochran, Spencer
    Costinett, Daniel J.
    Tolbert, Leon M.
    2020 IEEE ENERGY CONVERSION CONGRESS AND EXPOSITION (ECCE), 2020, : 5501 - 5508
  • [44] Design challenges for 13.56MHz 10 kW resonant inverter for wireless power transfer systems
    Nguyen Kien Trung
    Akatsu, Kan
    2019 10TH INTERNATIONAL CONFERENCE ON POWER ELECTRONICS AND ECCE ASIA (ICPE 2019 - ECCE ASIA), 2019,
  • [45] Resonant topology design method for implantable wireless power transfer system
    Lin, Manhao
    Qiu, Dongyuan
    Luo, Chengxin
    Zhang, Bo
    Xiao, Wenxun
    IET POWER ELECTRONICS, 2021, 14 (04) : 862 - 874
  • [46] Wireless Power Transfer for Implantable Medical Devices: Impact of Implantable Antennas on Energy Harvesting
    Essa, Amine
    Almajali, Eqab
    Mahmoud, Soliman
    Amaya, Rony E.
    Alja'afreh, Saqer S.
    Ikram, Muhammad
    IEEE OPEN JOURNAL OF ANTENNAS AND PROPAGATION, 2024, 5 (03): : 739 - 758
  • [47] Wireless Power Transfer Closed-Loop Control for Low-Power Active Implantable Medical Devices
    Del Bono, Fabiana
    Bontempi, Andrea
    Di Trani, Nicola
    Demarchi, Danilo
    Grattoni, Alessandro
    Ros, Paolo Motto
    2022 IEEE SENSORS, 2022,
  • [48] A 6.78-MHz Single-Stage Wireless Power Receiver Using a 3-Mode Reconfigurable Resonant Regulating Rectifier
    Cheng, Lin
    Ki, Wing-Hung
    Tsui, Chi-Ying
    IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2017, 52 (05) : 1412 - 1423
  • [49] Analysis and Design of a Reconfigurable Rectifier Circuit for Wireless Power Transfer
    Ngo, Tung
    Huang, An-Dong
    Guo, Yong-Xin
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2019, 66 (09) : 7089 - 7098
  • [50] An efficient wireless power transfer system planar turn based for implantable medical devices applications
    Duarte Junior, Jose G.
    D'Assuncao, Adaildo G.
    Brito-Filho, Francisco de A.
    Neto, Valdemir Praxedes da Silva
    MEASUREMENT, 2024, 235