Exact solution of an integrable anisotropic J1-J2 spin chain model

被引:2
作者
Qiao, Yi [1 ,2 ,3 ]
Sun, Pei [1 ,3 ]
Xin, Zhirong [1 ,3 ]
Cao, Junpeng [2 ,4 ,5 ,6 ]
Yang, Wen-Li [1 ,3 ,6 ,7 ]
机构
[1] Northwest Univ, Inst Modem Phys, Xian 710127, Peoples R China
[2] Chinese Acad Sci, Beijing Natl Lab Condensed Matter Phys, Inst Phys, Beijing 100190, Peoples R China
[3] Shaanxi Key Lab Theoret Phys Frontiers, Xian 710127, Peoples R China
[4] Univ Chinese Acad Sci, Sch Phys Sci, Beijing, Peoples R China
[5] Songshan Lake Mat Lab, Dongguan 523808, Guangdong, Peoples R China
[6] NSFC SFTP Peng Huanwu Ctr Fundamental Theory, Xian 710127, Peoples R China
[7] Northwest Univ, Sch Phys, Xian 710127, Peoples R China
基金
中国国家自然科学基金; 澳大利亚研究理事会;
关键词
quantum spin chain; Bethe Ansatz; Yang-Baxter equation; STAGGERED 6-VERTEX MODEL; HEISENBERG CHAIN; QUANTUM; SYMMETRY; LATTICE;
D O I
10.1088/1751-8121/ab6a32
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
An integrable anisotropic Heisenberg spin chain with nearest-neighbour couplings, next-nearest-neighbour couplings and scalar chirality terms is constructed. After proving the integrability, we obtain the exact solution of the system. The ground state and the elementary excitations are also studied. It is shown that the spinon excitation of the present model possesses a novel triple arched structure. The elementary excitation is gapless if the anisotropic parameter is real while the elementary excitation has an enhanced gap by the next-nearest-neighbour and chiral three-spin interactions if the anisotropic parameter is imaginary. The method of this paper provides a general way to construct integrable models with next-nearest-neighbour interactions.
引用
收藏
页数:18
相关论文
共 39 条
[1]  
[Anonymous], 1962, Phys. Rev, DOI DOI 10.1103/PHYSREV.128.2131
[2]   Integrable chain model with additional staggered model parameter [J].
Arnaudon, D ;
Poghossian, R ;
Sedrakyan, A ;
Sorba, P .
NUCLEAR PHYSICS B, 2000, 588 (03) :638-655
[3]   NOVEL LOCAL SYMMETRIES AND CHIRAL-SYMMETRY-BROKEN PHASES IN S=1/2 TRIANGULAR-LATTICE HEISENBERG-MODEL [J].
BASKARAN, G .
PHYSICAL REVIEW LETTERS, 1989, 63 (22) :2524-2527
[4]   Metal theory [J].
Bethe, H. .
ZEITSCHRIFT FUR PHYSIK, 1931, 71 (3-4) :205-226
[5]   NUMERICAL AND APPROXIMATE ANALYTICAL RESULTS FOR THE FRUSTRATED SPIN-1/2 QUANTUM SPIN CHAIN [J].
BURSILL, R ;
GEHRING, GA ;
FARNELL, DJJ ;
PARKINSON, JB ;
XIANG, T ;
ZENG, C .
JOURNAL OF PHYSICS-CONDENSED MATTER, 1995, 7 (45) :8605-8618
[6]   Model of chiral spin liquids with Abelian and non-Abelian topological phases [J].
Chen, Jyong-Hao ;
Mudry, Christopher ;
Chamon, Claudio ;
Tsvelik, A. M. .
PHYSICAL REVIEW B, 2017, 96 (22)
[7]   Quantum soliton in 1D Heisenberg spin chains with Dzyaloshinsky-Moriya and next-nearest-neighbor interactions [J].
Djoufack, Z. I. ;
Tala-Tebue, E. ;
Nguenang, J. P. ;
Kenfack-Jiotsa, A. .
CHAOS, 2016, 26 (10)
[8]   Numerical evidence for multiplicative logarithmic corrections from marginal operators [J].
Eggert, S .
PHYSICAL REVIEW B, 1996, 54 (14) :R9612-R9615
[9]   Integrable models of coupled Heisenberg chains [J].
Frahm, H ;
Rodenbeck, C .
EUROPHYSICS LETTERS, 1996, 33 (01) :47-52
[10]   Properties of the chiral spin liquid state in generalized spin ladders [J].
Frahm, H ;
Rodenbeck, C .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1997, 30 (13) :4467-4479