Learned Super Resolution Ultrasound for Improved Breast Lesion Characterization

被引:12
作者
Bar-Shira, Or [1 ]
Grubstein, Ahuva [2 ,3 ]
Rapson, Yael [2 ,3 ]
Suhami, Dror [2 ,3 ]
Atar, Eli [2 ,3 ]
Peri-Hanania, Keren [1 ]
Rosen, Ronnie [1 ]
Eldar, Yonina C. [1 ]
机构
[1] Weizmann Inst Sci, Dept Comp Sci & Appl Math, Rehovot, Israel
[2] Rabin Med Ctr, Radiol Dept, Beilinson Campus, Petah Tiqwa, Israel
[3] Tel Aviv Univ, Sackler Fac Med, Tel Aviv, Israel
来源
MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2021, PT VII | 2021年 / 12907卷
关键词
Breast cancer; Super resolution ultrasound; Deep learning; ALGORITHM;
D O I
10.1007/978-3-030-87234-2_11
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Breast cancer is the most common malignancy in women. Mammographic findings such as microcalcifications and masses, as well as morphologic features of masses in sonographic scans, are the main diagnostic targets for tumor detection. However, improved specificity of these imaging modalities is required. A leading alternative target is neoangiogenesis. When pathological, it contributes to the development of numerous types of tumors, and the formation of metastases. Hence, demonstrating neoangiogenesis by visualization of the microvasculature may be of great importance. Super resolution ultrasound localization microscopy enables imaging of the microvasculature at the capillary level. Yet, challenges such as long reconstruction time, dependency on prior knowledge of the system Point Spread Function (PSF), and separability of the Ultrasound Contrast Agents (UCAs), need to be addressed for translation of super-resolution US into the clinic. In this work we use a deep neural network architecture that makes effective use of signal structure to address these challenges. We present in vivo human results of three different breast lesions acquired with a clinical US scanner. By leveraging our trained network, the microvasculature structure is recovered in a short time, without prior PSF knowledge, and without requiring separability of the UCAs. Each of the recoveries exhibits a different structure that corresponds with the known histological structure. This study demonstrates the feasibility of in vivo human super resolution, based on a clinical scanner, to increase US specificity for different breast lesions and promotes the use of US in the diagnosis of breast pathologies.
引用
收藏
页码:109 / 118
页数:10
相关论文
共 23 条
[1]  
[Anonymous], 2015, ACS SYM SER
[2]   SUSHI: Sparsity-Based Ultrasound Super-Resolution Hemodynamic Imaging [J].
Bar-Zion, Avinoam ;
Solomon, Oren ;
Tremblay-Darveau, Charles ;
Adam, Dan ;
Eldar, Yonina C. .
IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 2018, 65 (12) :2365-2380
[3]   Imaging intracellular fluorescent proteins at nanometer resolution [J].
Betzig, Eric ;
Patterson, George H. ;
Sougrat, Rachid ;
Lindwasser, O. Wolf ;
Olenych, Scott ;
Bonifacino, Juan S. ;
Davidson, Michael W. ;
Lippincott-Schwartz, Jennifer ;
Hess, Harald F. .
SCIENCE, 2006, 313 (5793) :1642-1645
[4]   SUPER-RESOLUTION ULTRASOUND IMAGING [J].
Christensen-Jeffries, Kirsten ;
Couture, Olivier ;
Dayton, Paul A. ;
Eldar, Yonina C. ;
Hynynen, Kullervo ;
Kiessling, Fabian ;
O'Reilly, Meaghan ;
Pinton, I. Gianmarco F. ;
Schmitz, Georg ;
Tang, Meng-Xing ;
Tanter, Mickael ;
Van Sloun, Ruud J. G. .
ULTRASOUND IN MEDICINE AND BIOLOGY, 2020, 46 (04) :865-891
[5]   Imaging of perfusion using ultrasound [J].
Cosgrove, David ;
Lassau, Nathalie .
EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2010, 37 :S65-S85
[6]   Ultrasound Contrast Plane Wave Imaging [J].
Couture, Olivier ;
Fink, Mathias ;
Tanter, Mickael .
IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 2012, 59 (12) :2676-2683
[7]   ULTRAFAST IMAGING OF ULTRASOUND CONTRAST AGENTS [J].
Couture, Olivier ;
Bannouf, Souad ;
Montaldo, Gabriel ;
Aubry, Jean-Francois ;
Fink, Mathias ;
Tanter, Mickael .
ULTRASOUND IN MEDICINE AND BIOLOGY, 2009, 35 (11) :1908-1916
[8]   An iterative thresholding algorithm for linear inverse problems with a sparsity constraint [J].
Daubechies, I ;
Defrise, M ;
De Mol, C .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2004, 57 (11) :1413-1457
[9]   Clinical Pilot Application of Super-Resolution US Imaging in Breast Cancer [J].
Dencks, Stefanie ;
Piepenbrock, Marion ;
Opacic, Tatjana ;
Krauspe, Barbara ;
Stickeler, Elmar ;
Kiessling, Fabian ;
Schmitz, Georg .
IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 2019, 66 (03) :517-526
[10]   Breast tumour angiogenesis [J].
Fox, Stephen B. ;
Generali, Daniele G. ;
Harris, Adrian L. .
BREAST CANCER RESEARCH, 2007, 9 (06)