A Dual-Carbon Battery Based on Potassium-Ion Electrolyte

被引:252
作者
Ji, Bifa [1 ,2 ]
Zhang, Fan [1 ]
Wu, Nanzhong [1 ]
Tang, Yongbing [1 ]
机构
[1] Chinese Acad Sci, Shenzhen Inst Adv Technol, Funct Thin Films Res Ctr, Shenzhen 518055, Peoples R China
[2] Univ Sci & Technol China, Nano Sci & Technol Inst, Suzhou 215123, Peoples R China
基金
中国国家自然科学基金;
关键词
dual-carbon batteries; graphite cathode; MCMB anode; potassium-ion electrolyte; dual ion batteries; HIGH-VOLTAGE; INTERCALATION; GRAPHITE; NANOSHEETS; CHEMISTRY; CATHODE; ANIONS; ANODE;
D O I
10.1002/aenm.201700920
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Although potassium-ion batteries (KIBs) have been considered to be promising alternatives to conventional lithium-ion batteries due to large abundance and low cost of potassium resources, their development still stays at the infancy stage due to the lack of appropriate cathode and anode materials with reversible potassium insertion/extraction as well as good rate and cycling performance. Herein, a novel dual-carbon battery based on a potassium-ion electrolyte (named as K-DCB), utilizing expanded graphite as cathode material and mesocarbon microbead as anode material is developed. The working mechanism of the K-DCB is investigated, which is further demonstrated to deliver a high reversible capacity of 61 mA h g(-1) at a current density of 1C over a voltage window of 3.0-5.2 V, as well as good cycling performance with negligible capacity decay after 100 cycles. Moreover, the high working voltage with medium discharge voltage of 4.5 V also enables the K-DCB to meet the requirement of some high-voltage devices. With the merits of environmental friendliness, low cost and high energy density, the K-DCB shows attractive potential for future energy storage application.
引用
收藏
页数:6
相关论文
共 42 条
[1]   A Dual-Ion Battery Cathode via Oxidative Insertion of Anions in a Metal-Organic Framework [J].
Aubrey, Michael L. ;
Long, Jeffrey R. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2015, 137 (42) :13594-13602
[2]   Potassium secondary cell based on Prussian blue cathode [J].
Eftekhari, A .
JOURNAL OF POWER SOURCES, 2004, 126 (1-2) :221-228
[3]   Potassium Secondary Batteries [J].
Eftekhari, Ali ;
Jian, Zelang ;
Ji, Xiulei .
ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (05) :4404-4419
[4]   Soft Carbon as Anode for High-Performance Sodium-Based Dual Ion Full Battery [J].
Fan, Ling ;
Liu, Qian ;
Chen, Suhua ;
Xu, Zhi ;
Lu, Bingan .
ADVANCED ENERGY MATERIALS, 2017, 7 (14)
[5]   The Li-Ion Rechargeable Battery: A Perspective [J].
Goodenough, John B. ;
Park, Kyu-Sung .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (04) :1167-1176
[6]   Electrolyte additives for lithium ion battery electrodes: progress and perspectives [J].
Haregewoin, Atetegeb Meazah ;
Wotango, Aselefech Sorsa ;
Hwang, Bing-Joe .
ENERGY & ENVIRONMENTAL SCIENCE, 2016, 9 (06) :1955-1988
[7]   A Novel Potassium-Ion-Based Dual-Ion Battery [J].
Ji, Bifa ;
Zhang, Fan ;
Song, Xiaohe ;
Tang, Yongbing .
ADVANCED MATERIALS, 2017, 29 (19)
[8]   A Novel and Generalized Lithium-Ion-Battery Configuration utilizing Al Foil as Both Anode and Current Collector for Enhanced Energy Density [J].
Ji, Bifa ;
Zhang, Fan ;
Sheng, Maohua ;
Tong, Xuefeng ;
Tang, Yongbing .
ADVANCED MATERIALS, 2017, 29 (07)
[9]   Carbon Electrodes for K-Ion Batteries [J].
Jian, Zelang ;
Luo, Wei ;
Ji, Xiulei .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2015, 137 (36) :11566-11569
[10]   Integrated Configuration Design for Ultrafast Rechargeable Dual-Ion Battery [J].
Jiang, Chunlei ;
Fang, Yue ;
Lang, Jihui ;
Tang, Yongbing .
ADVANCED ENERGY MATERIALS, 2017, 7 (19)