Electrocatalytic activity and simultaneous determination of catechol and hydroquinone at mesoporous platinum electrode

被引:149
作者
Ghanem, Mohamed A.
机构
[1] Univ Bath, Dept Chem, Bath BA2 7AY, Avon, England
[2] Fac Petr & Min Engn, Dept Math Sci, Suez, Egypt
关键词
cyclic voltammetry; differential pulse; nanostructured mesoporous platinum; catechol; hydroquinone; simultaneous determination;
D O I
10.1016/j.elecom.2007.07.023
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
The electrochemical oxidation of catechol and hydroquinone was investigated using cyclic and differential pulse voltammetries at nanostructured mesoporous platinum film electrochemically deposited from the hexagonal liquid crystalline template Of C16EO8 surfactant. The mesoporous platinum electrode has shown an excellent electrocatalytic activity and reversibility towards the oxidation of catechol and hydroquinone redox isomers in 1.0 M HClO4. The oxidation and reduction peak separation (Delta E) has been decreased from 485 to 55 mV for hydroquinone and from 430 to 75 mV vs. SCE for catechol at polished polycrystalline and mesoporous platinum electrodes, respectively. The differential pulse voltammograms in a mixture solution of catechol and hydroquinone have shown that the oxidation peaks became well resolved and are separated by about 100 mV, although the bare electrode gave a single broad oxidation peak. Moreover, the oxidation current of hydroquinone and catechol has been enhanced by a factor of two and four times, respectively, at mesoporous platinum electrode. Using differential pulse voltammetry, a highly selective and simultaneous determination of hydroquinone and catechol has been explored at mesoporous platinum electrode. (C) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:2501 / 2506
页数:6
相关论文
共 27 条
[1]   Mesoporous platinum films from lyotropic liquid crystalline phases [J].
Attard, GS ;
Bartlett, PN ;
Coleman, NRB ;
Elliott, JM ;
Owen, JR ;
Wang, JH .
SCIENCE, 1997, 278 (5339) :838-840
[2]   Liquid-crystal templates for nanostructured metals [J].
Attard, GS ;
Goltner, CG ;
Corker, JM ;
Henke, S ;
Templer, RH .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION IN ENGLISH, 1997, 36 (12) :1315-1317
[3]   The preparation and characterisation of H1-e palladium films with a regular hexagonal nanostructure formed by electrochemical deposition from lyotropic liquid crystalline phases [J].
Bartlett, PN ;
Gollas, B ;
Guerin, S ;
Marwan, J .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2002, 4 (15) :3835-3842
[4]   The electrochemical deposition of nanostructured cobalt films from lyotropic liquid crystalline media [J].
Bartlett, PN ;
Birkin, PN ;
Ghanem, MA ;
de Groot, P ;
Sawicki, M .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2001, 148 (02) :C119-C123
[5]   Electrochemical reduction of oxygen on mesoporous platinum microelectrodes [J].
Birkin, PR ;
Elliott, JM ;
Watson, YE .
CHEMICAL COMMUNICATIONS, 2000, (17) :1693-1694
[6]  
Carvalho M.R., 2000, ANAL CHIM ACTA, V420, P120
[7]  
Chambers J. Q., 1988, CHEM QUINONOID COMPO, VII
[8]   Direct simultaneous determination of dihydroxybenzene isomers at C-nanotube-modified electrodes by derivative voltammetry [J].
Ding, YP ;
Liu, WL ;
Wu, QS ;
Wang, XG .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2005, 575 (02) :275-280
[9]   Self-catalysis by catechols and quinones during heterogeneous electron transfer at carbon electrodes [J].
DuVall, SH ;
McCreery, RL .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2000, 122 (28) :6759-6764
[10]   Control of catechol and hydroquinone electron-transfer kinetics on native and modified glassy carbon electrodes [J].
DuVall, SH ;
McCreery, RL .
ANALYTICAL CHEMISTRY, 1999, 71 (20) :4594-4602