Tunable and scalable fabrication of plasmonic dimer arrays with sub-10 nm nanogaps by area-selective atomic layer deposition

被引:2
|
作者
Zhang, Chengwu [1 ,2 ]
Gao, Tuo [1 ,2 ]
Sheets, Donal [2 ,3 ]
Hancock, Jason N. [2 ,3 ]
Tresback, Jason [4 ]
Willis, Brian [1 ,2 ]
机构
[1] Univ Connecticut, Dept Chem & Biomol Engn, Storrs, CT 06269 USA
[2] Univ Connecticut, Inst Mat Sci, Storrs, CT 06269 USA
[3] Univ Connecticut, Dept Phys, Storrs, CT 06269 USA
[4] Harvard Univ, Ctr Nanoscale Syst, Cambridge, MA 02138 USA
来源
基金
美国国家科学基金会;
关键词
NANOPARTICLE ARRAYS; ELECTRODES; SEPARATION; ANTENNAS; PAIRS;
D O I
10.1116/6.0001205
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Nanogaps in metallic nanostructures produce local field enhancements with potential applications in surface enhanced spectroscopy, solar energy conversion, and photocatalysis. Atomic layer deposition is applied as a conformal coating to modify nanogap sizes and tune the optical properties of plasmonic dimer arrays with sub-10 nm nanogaps. Nanostructures are fabricated using layers of gold and palladium to combine features of plasmonics and area-selective atomic layer deposition, where copper metal is deposited on palladium-covered surfaces. Direct measurements of optical extinction for successive smaller nanogaps and thicker copper coatings show that spectral features become broadened at first due to heating-induced shape changes but subsequently sharpen as copper coatings form on palladium structures. Furthermore, longitudinal resonances of plasmonic dimers blue shift for thin coatings due to heating and decreasing aspect ratio, but thicker coatings lead to red shifts due to narrowing nanogaps. Together, these results show that area-selective atomic layer deposition is a promising tool for achieving large area arrays of plasmonic dimers with sub-10 nm nanogaps.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Area-Selective Atomic Layer Deposition: Role of Surface Chemistry
    Mameli, A.
    Karasulu, B.
    Verheijen, M. A.
    Mackus, A. J. M.
    Kessels, W. M. M.
    Roozeboom, F.
    ATOMIC LAYER DEPOSITION APPLICATIONS 13, 2017, 80 (03): : 39 - 48
  • [22] Area-selective atomic layer deposition enabled by competitive adsorption
    Suh, Taewon
    Yang, Yan
    Sohn, Hae Won
    DiStasio, Robert A., Jr.
    Engstrom, James R.
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 2020, 38 (06):
  • [23] Exploiting atomic layer deposition for fabricating sub-10 nm X-ray lenses
    Roesner, Benedikt
    Koch, Frieder
    Doering, Florian
    Bosgra, Jeroen
    Guzenko, Vitaliy A.
    Kirk, Eugenie
    Meyer, Markus
    Omelas, Joshua L.
    Fink, Rainer H.
    Stanescu, Stefan
    Swaraj, Sufal
    Belkhou, Rachid
    Watts, Benjamin
    Raabe, Joerg
    David, Christian
    MICROELECTRONIC ENGINEERING, 2018, 191 : 91 - 96
  • [24] Atomic Layer Deposition of Ni Thin Films and Application to Area-Selective Deposition
    Kim, Woo-Hee
    Lee, Han-Bo-Ram
    Heo, Kwang
    Lee, Young Kuk
    Chung, Taek-Mo
    Kim, Chang Gyoun
    Hong, Seunghun
    Heo, Jong
    Kim, Hyungjun
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2011, 158 (01) : D1 - D5
  • [25] Mechanisms of Area-Selective Atomic Layer Deposition and Their Impact on Feature Sizes
    Young, Katherine T.
    Hsiao, Andy
    Brummer, Amy
    Yang, Chris
    JOURNAL OF PHYSICAL CHEMISTRY C, 2024, 128 (35): : 14790 - 14800
  • [26] Low temperature, area-selective atomic layer deposition of NiO and Ni
    Nallan, Himamshu C.
    Yang, Xin
    Coffey, Brennan M.
    Ekerdt, John G.
    Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2022, 40 (06):
  • [27] Integrated "Hot Spots": Tunable Sub-10 nm Crescent Nanogap Arrays
    Zhang, Wei
    Gu, Panpan
    Wang, Zengyao
    Ai, Bin
    Zhou, Ziwei
    Zhao, Zhiyuan
    Li, Chunguang
    Shi, Zhan
    Zhang, Gang
    ADVANCED OPTICAL MATERIALS, 2019, 7 (24)
  • [28] Area-Selective Atomic Layer Deposition of Crystalline BaTiO3
    Coffey, Brennan M.
    Lin, Edward L.
    Chen, Pei-Yu
    Ekerdt, John G.
    CHEMISTRY OF MATERIALS, 2019, 31 (15) : 5558 - 5565
  • [29] Low temperature, area-selective atomic layer deposition of NiO and Ni
    Nallan, Himamshu C.
    Yang, Xin
    Coffey, Brennan M.
    Ekerdt, John G.
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 2022, 40 (06):
  • [30] Area-selective atomic layer deposition of platinum using photosensitive polyimide
    Vervuurt, Rene H. J.
    Sharma, Akhil
    Jiao, Yuqing
    Kessels, Wilhelmus M. M.
    Bol, Ageeth A.
    NANOTECHNOLOGY, 2016, 27 (40)