Tunable and scalable fabrication of plasmonic dimer arrays with sub-10 nm nanogaps by area-selective atomic layer deposition

被引:2
|
作者
Zhang, Chengwu [1 ,2 ]
Gao, Tuo [1 ,2 ]
Sheets, Donal [2 ,3 ]
Hancock, Jason N. [2 ,3 ]
Tresback, Jason [4 ]
Willis, Brian [1 ,2 ]
机构
[1] Univ Connecticut, Dept Chem & Biomol Engn, Storrs, CT 06269 USA
[2] Univ Connecticut, Inst Mat Sci, Storrs, CT 06269 USA
[3] Univ Connecticut, Dept Phys, Storrs, CT 06269 USA
[4] Harvard Univ, Ctr Nanoscale Syst, Cambridge, MA 02138 USA
来源
基金
美国国家科学基金会;
关键词
NANOPARTICLE ARRAYS; ELECTRODES; SEPARATION; ANTENNAS; PAIRS;
D O I
10.1116/6.0001205
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Nanogaps in metallic nanostructures produce local field enhancements with potential applications in surface enhanced spectroscopy, solar energy conversion, and photocatalysis. Atomic layer deposition is applied as a conformal coating to modify nanogap sizes and tune the optical properties of plasmonic dimer arrays with sub-10 nm nanogaps. Nanostructures are fabricated using layers of gold and palladium to combine features of plasmonics and area-selective atomic layer deposition, where copper metal is deposited on palladium-covered surfaces. Direct measurements of optical extinction for successive smaller nanogaps and thicker copper coatings show that spectral features become broadened at first due to heating-induced shape changes but subsequently sharpen as copper coatings form on palladium structures. Furthermore, longitudinal resonances of plasmonic dimers blue shift for thin coatings due to heating and decreasing aspect ratio, but thicker coatings lead to red shifts due to narrowing nanogaps. Together, these results show that area-selective atomic layer deposition is a promising tool for achieving large area arrays of plasmonic dimers with sub-10 nm nanogaps.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Interconnected Dimers with Sub-10 nm Nanogaps by Atomic Layer Deposition for Plasmonic Nanojunctions
    Willis, Brian G.
    Grasso, John
    Zhang, Chengwu
    Raman, Rahul
    ACS APPLIED NANO MATERIALS, 2023, 6 (23) : 22152 - 22164
  • [2] Scalable Fabrication of Metallic Nanogaps at the Sub-10 nm Level
    Luo, Sihai
    Hoff, Bard H.
    Maier, Stefan A.
    de Mello, John C.
    ADVANCED SCIENCE, 2021, 8 (24)
  • [3] Plasmonic Chiral Metamaterials with Sub-10 nm Nanogaps
    Zhang, Wei
    Ai, Bin
    Gu, Panpan
    Guan, Yuduo
    Wang, Zengyao
    Xiao, Zifan
    Zhang, Gang
    ACS NANO, 2021, 15 (11) : 17657 - 17667
  • [4] Sub-10 nm Au-Ag Heterogeneous Plasmonic Nanogaps
    Gu, Panpan
    Zheng, Tianxing
    Zhang, Wei
    Ai, Bin
    Zhao, Zhiyuan
    Zhang, Gang
    ADVANCED MATERIALS INTERFACES, 2020, 7 (06):
  • [5] Fabrication of sub-10 nm gap arrays over large areas for plasmonic sensors
    Siegfried, T.
    Ekinci, Y.
    Solak, H. H.
    Martin, O. J. F.
    Sigg, H.
    APPLIED PHYSICS LETTERS, 2011, 99 (26)
  • [6] Area-selective atomic layer deposition of palladium
    Nallan, Himamshu C.
    Yang, Xin
    Coffey, Brennan M.
    Dolocan, Andrei
    Ekerdt, John G.
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 2024, 42 (02):
  • [7] Approaches and opportunities for area-selective atomic layer deposition
    Mackus, Adriaan J. M.
    2018 INTERNATIONAL SYMPOSIUM ON VLSI TECHNOLOGY, SYSTEMS AND APPLICATION (VLSI-TSA), 2018,
  • [8] Inherent area-selective atomic layer deposition of ZnS
    Zhang, Chao
    Vehkamaki, Marko
    Leskela, Markku
    Ritala, Mikko
    DALTON TRANSACTIONS, 2023, 52 (28) : 9622 - 9630
  • [9] Inhibitor-Free Area-Selective Atomic Layer Deposition with Feature Size Down to Nearly 10 nm
    Chou, Chun-Yi
    Mo, Chi-Lin
    Chuu, Chih-Piao
    Wang, Ting-Yun
    Huang, Chin-Chao
    Hou, Cheng-Hung
    Chuang, Chun-Ho
    Jiang, Yu-Sen
    Shyue, Jing-Jong
    Chen, Miin-Jang
    CHEMISTRY OF MATERIALS, 2023, 35 (03) : 1107 - 1115
  • [10] Area-selective atomic layer deposition of molybdenum oxide
    Kvalvik, Julie Nitsche
    Borgersen, Jon
    Hansen, Per-Anders
    Nilsen, Ola
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 2020, 38 (04):