We study a moving boundary problem describing the growth of nonnecrotic tumors in different regimes of vascularisation. This model consists of two decoupled Dirichlet problem, one for the rate at which nutrient is added to the tumor domain and one for the pressure inside the tumor. These variables are coupled by a relation which describes the dynamic of the boundary. By re-expressing the problem as an abstract evolution equation, we prove local well-posedness in the small Holder spaces context. Further on, we use the principle of linearised stability to characterise the stability properties of the unique radially symmetric equilibrium of the problem.