The geometrical problem of electrical impedance tomography in the disk

被引:0
|
作者
Sharafutdinov, V. A. [1 ,2 ]
机构
[1] Sobolev Inst Math, Novosibirsk, Russia
[2] Novosibirsk State Univ, Novosibirsk 630090, Russia
基金
俄罗斯基础研究基金会;
关键词
electrical impedance tomography; Dirichlet-to-Neumann operator; conformal map; BOUNDARY; MANIFOLDS;
D O I
10.1134/S0037446606010198
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The geometrical problem of electrical impedance tomography consists of recovering a Riemannian metric on a compact manifold with boundary from the Dirichlet-to-Neumann operator (DNoperator) given on the boundary. We present a new elementary proof of the uniqueness theorem: A Riemannian metric on the two-dimensional disk is determined by its DN-operator uniquely up to a conformal equivalence. We also prove an existence theorem that describes all operators on the circle that are DN-operators of Riemannian metrics on the disk.
引用
收藏
页码:178 / 190
页数:13
相关论文
共 50 条
  • [1] The geometrical problem of electrical impedance tomography in the disk
    V. A. Sharafutdinov
    Siberian Mathematical Journal, 2011, 52 : 178 - 190
  • [2] The Linearized Inverse Problem in Multifrequency Electrical Impedance Tomography
    Alberti, Giovanni S.
    Ammari, Habib
    Jin, Bangti
    Seo, Jin-Keun
    Zhang, Wenlong
    SIAM JOURNAL ON IMAGING SCIENCES, 2016, 9 (04): : 1525 - 1551
  • [3] FINITE VOLUME SCHEMES FOR THE ELECTRICAL IMPEDANCE TOMOGRAPHY PROBLEM
    Sherina, E. S.
    Starchenko, A., V
    VESTNIK TOMSKOGO GOSUDARSTVENNOGO UNIVERSITETA-MATEMATIKA I MEKHANIKA-TOMSK STATE UNIVERSITY JOURNAL OF MATHEMATICS AND MECHANICS, 2014, (29): : 25 - 38
  • [4] Recursive estimation of fast impedance changes in electrical impedance tomography and a related problem
    Kaipio, JP
    Somersalo, E
    Karjalainen, PA
    Vauhkonen, M
    COMPUTATIONAL, EXPERIMENTAL, AND NUMERICAL METHODS FOR SOLVING ILL-POSED INVERSE IMAGING PROBLEMS: MEDICAL AND NONMEDICAL APPLICATIONS, 1997, 3171 : 208 - 216
  • [5] Electrical impedance tomography: an improved model for solving the forward problem
    Todor, D
    Copeland, G
    Cheran, L
    PHYSICA MEDICA, 1997, 13 : 358 - 361
  • [6] FEM Convergence of a Segmentation Approach to the Electrical Impedance Tomography Problem
    Mendoza, Renier
    Keeling, Stephen
    PROCEEDINGS OF THE 7TH SEAMS UGM INTERNATIONAL CONFERENCE ON MATHEMATICS AND ITS APPLICATIONS 2015: ENHANCING THE ROLE OF MATHEMATICS IN INTERDISCIPLINARY RESEARCH, 2016, 1707
  • [7] Electrical impedance tomography
    Cheney, M
    Isaacson, D
    Newell, JC
    SIAM REVIEW, 1999, 41 (01) : 85 - 101
  • [8] Electrical Impedance Tomography
    Hinz, Jose
    CURRENT RESPIRATORY MEDICINE REVIEWS, 2009, 5 (02) : 105 - 109
  • [9] Electrical impedance tomography
    Costa, Eduardo L. V.
    Lima, Raul Gonzalez
    Amato, Marcelo B. P.
    CURRENT OPINION IN CRITICAL CARE, 2009, 15 (01) : 18 - 24
  • [10] Simulation of an inverse problem in electrical impedance tomography using resistance electrical network analogues
    Abdullah, MZ
    INTERNATIONAL JOURNAL OF ELECTRICAL ENGINEERING EDUCATION, 1999, 36 (04) : 311 - 324