Optimal Parameter Estimation of Solar Cell using Simulated Annealing Inertia Weight Particle Swarm Optimization (SAIW-PSO)

被引:0
|
作者
Kiani, Arooj Tariq [1 ]
Nadeem, Muhammad Faisal [1 ]
Ahmed, Ali [1 ]
Sajjad, Intisar Ali [1 ]
Hans, Muhammad Sohaib [2 ]
Martirano, Luigi [3 ]
机构
[1] Univ Engn & Technol Taxila, Dept Elect Engn, Taxila, Pakistan
[2] Bahria Univ, Dept Elect Engn, Islamabad, Pakistan
[3] Sapienza Univ Roma, Dept Astronaut Elect & Energy Engn DIAEE, Rome, Italy
关键词
parameter estimation; double and single diode models; photovoltaic; Simulated Annealing inertia weight particle swarm optimization; Root mean square error; IDENTIFICATION; ALGORITHM; MODELS; EXTRACTION;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The operation of Photovoltaic (PV) system mainly rely on appropriate modeling of solar cells and optimum approximation of parameters associated with them. Recently, various hybrid, numerical and analytical techniques were proposed to extract optimal parameters of PV cell. This paper presents an efficient approach, A Simulated Annealing Inertia Weight Particle Swarm Optimization (SAIW-PSO) for optimal estimation of PV parameters for double and single diode models. In addition, fitness indicator is guided using the Newton Raphson Method (NRM) that supports SAIW-PSO to explore the optimal solution. The premature convergence problem of typical PSO is resolved by the proposed framework. The strength of proposed approach is validated under standard test conditions (STC) on RTC France Silicon Solar cell. The SAIW-PSO is capable to explore optimum solution in smaller number of iterations and less computation time. The obtained results clearly depict that the proposed framework is fast, efficient and much accurate for PV cells parameters approximation.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Path test data generation using adaptive simulated annealing particle swarm optimization
    Jiao, Chongyang
    Zhou, Qinglei
    Soft Computing, 2024, 28 (17-18) : 9587 - 9607
  • [42] Polynomial analogy-based software development effort estimation using combined particle swarm optimization and simulated annealing
    Shahpar, Zahra
    Bardsiri, Vahid Khatibi
    Bardsiri, Amid Khatibi
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2021, 33 (20):
  • [43] Solving binary cutting stock with matheuristics using particle swarm optimization and simulated annealing
    Ivan Adrian Lopez Sanchez
    Jaime Mora Vargas
    Cipriano A. Santos
    Miguel Gonzalez Mendoza
    Cesar J. Montiel Moctezuma
    Soft Computing, 2018, 22 : 6111 - 6119
  • [44] PARTICLE SWARM OPTIMIZATION ALGORITHM WITH DYNAMIC INERTIA WEIGHT FOR ONLINE PARAMETER IDENTIFICATION APPLIED TO LORENZ CHAOTIC SYSTEM
    Alfi, Alireza
    INTERNATIONAL JOURNAL OF INNOVATIVE COMPUTING INFORMATION AND CONTROL, 2012, 8 (02): : 1191 - 1203
  • [46] Parameter Estimation of an Induction Machine using a Dynamic Particle Swarm Optimization Algorithm
    Huynh, Duy C.
    Dunnigan, Matthew W.
    IEEE INTERNATIONAL SYMPOSIUM ON INDUSTRIAL ELECTRONICS (ISIE 2010), 2010, : 1414 - 1419
  • [47] Parameter Estimation of Water Quality Model Using Particle Swarm Optimization Technique
    Wang, Ke
    Wang, Xiaodong
    Shen, Li
    CCDC 2009: 21ST CHINESE CONTROL AND DECISION CONFERENCE, VOLS 1-6, PROCEEDINGS, 2009, : 1209 - 1214
  • [48] Feature Selection Using Binary Particle Swarm Optimization with Time Varying Inertia Weight Strategies
    Mafarja, Majdi
    Jarrar, Radi
    Ahmad, Sobhi
    Abusnaina, Ahmed A.
    ICFNDS'18: PROCEEDINGS OF THE 2ND INTERNATIONAL CONFERENCE ON FUTURE NETWORKS AND DISTRIBUTED SYSTEMS, 2018,
  • [49] A novel hybrid particle swarm optimization rat search algorithm for parameter estimation of solar PV and fuel cell model
    Singla, Manish Kumar
    Nijhawan, Parag
    Oberoi, Amandeep Singh
    COMPEL-THE INTERNATIONAL JOURNAL FOR COMPUTATION AND MATHEMATICS IN ELECTRICAL AND ELECTRONIC ENGINEERING, 2022, 41 (05) : 1505 - 1527
  • [50] Optimal Coordination of Over-current Relay Using Particle Swarm Optimization (PSO) Algorithm
    Choudhary, Pankaj Kumar
    Das, Dushmanta Kumar
    PROCEEDINGS OF 2020 IEEE APPLIED SIGNAL PROCESSING CONFERENCE (ASPCON 2020), 2020, : 308 - 312