Optimal Parameter Estimation of Solar Cell using Simulated Annealing Inertia Weight Particle Swarm Optimization (SAIW-PSO)

被引:0
|
作者
Kiani, Arooj Tariq [1 ]
Nadeem, Muhammad Faisal [1 ]
Ahmed, Ali [1 ]
Sajjad, Intisar Ali [1 ]
Hans, Muhammad Sohaib [2 ]
Martirano, Luigi [3 ]
机构
[1] Univ Engn & Technol Taxila, Dept Elect Engn, Taxila, Pakistan
[2] Bahria Univ, Dept Elect Engn, Islamabad, Pakistan
[3] Sapienza Univ Roma, Dept Astronaut Elect & Energy Engn DIAEE, Rome, Italy
关键词
parameter estimation; double and single diode models; photovoltaic; Simulated Annealing inertia weight particle swarm optimization; Root mean square error; IDENTIFICATION; ALGORITHM; MODELS; EXTRACTION;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The operation of Photovoltaic (PV) system mainly rely on appropriate modeling of solar cells and optimum approximation of parameters associated with them. Recently, various hybrid, numerical and analytical techniques were proposed to extract optimal parameters of PV cell. This paper presents an efficient approach, A Simulated Annealing Inertia Weight Particle Swarm Optimization (SAIW-PSO) for optimal estimation of PV parameters for double and single diode models. In addition, fitness indicator is guided using the Newton Raphson Method (NRM) that supports SAIW-PSO to explore the optimal solution. The premature convergence problem of typical PSO is resolved by the proposed framework. The strength of proposed approach is validated under standard test conditions (STC) on RTC France Silicon Solar cell. The SAIW-PSO is capable to explore optimum solution in smaller number of iterations and less computation time. The obtained results clearly depict that the proposed framework is fast, efficient and much accurate for PV cells parameters approximation.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] High efficient solar cells through multi-layer thickness optimization using particle swarm optimization and simulated annealing
    Kargaran, Hamed
    Bayat, Elahe
    Hassanzadeh, Aliakbar
    Alahyarizadeh, Ghasem
    INTERNATIONAL JOURNAL OF ENERGY AND ENVIRONMENTAL ENGINEERING, 2023, 14 (04) : 661 - 670
  • [32] An improved reactive force field parameter optimization framework based on simulated annealing and particle swarm optimization algorithms
    Sun, Qinhao
    Zhong, Jinhuan
    Shi, Pengfei
    Xu, Huajie
    Wang, Yang
    COMPUTATIONAL MATERIALS SCIENCE, 2025, 251
  • [33] Optimal allocation of regional water resources based on simulated annealing particle swarm optimization algorithm
    Wang, Zhanping
    Tian, Juncang
    Feng, Kepeng
    ENERGY REPORTS, 2022, 8 : 9119 - 9126
  • [34] USING PARTICLE SWARM OPTIMIZATION ALGORITHM FOR PARAMETER ESTIMATION IN HYDROLOGICAL MODELLING
    Jakubcova, Michala
    INFORMATICS, GEOINFORMATICS AND REMOTE SENSING, VOL I (SGEM 2015), 2015, : 399 - 406
  • [35] Parameter estimation of nonlinear thermoelectric structures using particle swarm optimization
    Ojeda, Daniel R. G.
    de Almeida, Luiz A. L.
    Vilcanqui, Omar A. C.
    SIMULATION MODELLING PRACTICE AND THEORY, 2018, 81 : 1 - 10
  • [36] Kinetic parameter estimation in hydrocracking using hybrid particle swarm optimization
    Kumar, V.
    Balasubramanian, P.
    FUEL, 2009, 88 (11) : 2171 - 2180
  • [37] IIR System Identification Using Particle Swarm Optimization with Improved Inertia Weight Approach
    Saha, S. K.
    Mandal, D.
    Kar, R.
    Saha, Mallika
    Ghoshal, S. P.
    2012 THIRD INTERNATIONAL CONFERENCE ON EMERGING APPLICATIONS OF INFORMATION TECHNOLOGY (EAIT), 2012, : 43 - 46
  • [38] Optimization of hydropower station operation by using particle swarm algorithm based on simulated annealing
    Shen, Jianjian
    Cheng, Chuntian
    Liao, Shengli
    Zhang, Jun
    Shuili Fadian Xuebao/Journal of Hydroelectric Engineering, 2009, 28 (03): : 10 - 15
  • [39] Solving binary cutting stock with matheuristics using particle swarm optimization and simulated annealing
    Lopez Sanchez, Ivan Adrian
    Mora Vargas, Jaime
    Santos, Cipriano A.
    Gonzalez Mendoza, Miguel
    Montiel Moctezuma, Cesar L.
    SOFT COMPUTING, 2018, 22 (18) : 6111 - 6119
  • [40] Unit commitment using particle swarm-based-simulated annealing optimization approach
    Sadati, Nasser
    Hajian, Mahdi
    Zamani, Majid
    2007 IEEE SWARM INTELLIGENCE SYMPOSIUM, 2007, : 297 - +