Optimal Parameter Estimation of Solar Cell using Simulated Annealing Inertia Weight Particle Swarm Optimization (SAIW-PSO)

被引:0
|
作者
Kiani, Arooj Tariq [1 ]
Nadeem, Muhammad Faisal [1 ]
Ahmed, Ali [1 ]
Sajjad, Intisar Ali [1 ]
Hans, Muhammad Sohaib [2 ]
Martirano, Luigi [3 ]
机构
[1] Univ Engn & Technol Taxila, Dept Elect Engn, Taxila, Pakistan
[2] Bahria Univ, Dept Elect Engn, Islamabad, Pakistan
[3] Sapienza Univ Roma, Dept Astronaut Elect & Energy Engn DIAEE, Rome, Italy
关键词
parameter estimation; double and single diode models; photovoltaic; Simulated Annealing inertia weight particle swarm optimization; Root mean square error; IDENTIFICATION; ALGORITHM; MODELS; EXTRACTION;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The operation of Photovoltaic (PV) system mainly rely on appropriate modeling of solar cells and optimum approximation of parameters associated with them. Recently, various hybrid, numerical and analytical techniques were proposed to extract optimal parameters of PV cell. This paper presents an efficient approach, A Simulated Annealing Inertia Weight Particle Swarm Optimization (SAIW-PSO) for optimal estimation of PV parameters for double and single diode models. In addition, fitness indicator is guided using the Newton Raphson Method (NRM) that supports SAIW-PSO to explore the optimal solution. The premature convergence problem of typical PSO is resolved by the proposed framework. The strength of proposed approach is validated under standard test conditions (STC) on RTC France Silicon Solar cell. The SAIW-PSO is capable to explore optimum solution in smaller number of iterations and less computation time. The obtained results clearly depict that the proposed framework is fast, efficient and much accurate for PV cells parameters approximation.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Photovoltaic Cell Parameter Estimation Using Hybrid Particle Swarm Optimization and Simulated Annealing
    Mughal, Muhammad Ali
    Ma, Qishuang
    Xiao, Chunyan
    ENERGIES, 2017, 10 (08)
  • [2] Optimal weight design of a gear train using particle swarm optimization and simulated annealing algorithms
    Savsani, V.
    Rao, R. V.
    Vakharia, D. P.
    MECHANISM AND MACHINE THEORY, 2010, 45 (03) : 531 - 541
  • [3] An Analysis of the Inertia Weight Parameter for Binary Particle Swarm Optimization
    Liu, Jianhua
    Mei, Yi
    Li, Xiaodong
    IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2016, 20 (05) : 666 - 681
  • [4] Solar cell modeling and parameter optimization using simulated annealing
    Asif, Samina
    Li, Yun
    JOURNAL OF PROPULSION AND POWER, 2008, 24 (05) : 1018 - 1022
  • [5] Particle swarm optimization using Gaussian inertia weight
    Pant, Millie
    Radha, T.
    Singh, V. P.
    ICCIMA 2007: INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND MULTIMEDIA APPLICATIONS, VOL I, PROCEEDINGS, 2007, : 97 - 102
  • [6] Optimal PV Parameter Estimation via Double Exponential Function-Based Dynamic Inertia Weight Particle Swarm Optimization
    Kiani, Arooj Tariq
    Nadeem, Muhammad Faisal
    Ahmed, Ali
    Khan, Irfan
    Elavarasan, Rajvikram Madurai
    Das, Narottam
    ENERGIES, 2020, 13 (15)
  • [7] Dynamic optimal power flow using hybrid particle swarm optimization and simulated annealing
    Niknam, Taher
    Narimani, Mohammad Rasoul
    Jabbari, Masoud
    INTERNATIONAL TRANSACTIONS ON ELECTRICAL ENERGY SYSTEMS, 2013, 23 (07): : 975 - 1001
  • [8] Estimation of Power System Inertia Using Particle Swarm Optimization
    Zografos, Dimitrios
    Ghandhari, Mehrdad
    Paridari, Kaveh
    2017 19TH INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEM APPLICATION TO POWER SYSTEMS (ISAP), 2017,
  • [9] Optimal Location of FACTS Devices Using Adaptive Particle Swarm Optimization Hybrid with Simulated Annealing
    Ajami, Ali
    Aghajani, Gh
    Pourmahmood, M.
    JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY, 2010, 5 (02) : 179 - 190
  • [10] Cosmological parameter estimation using Particle Swarm Optimization
    Prasad, J.
    Souradeep, T.
    VISHWA MIMANSA: AN INTERPRETATIVE EXPOSITION OF THE UNIVERSE. PROCEEDINGS OF THE 7TH INTERNATIONAL CONFERENCE ON GRAVITATION AND COSMOLOGY, 2014, 484