Certifying unsatisfiability of random 2k-SAT formulas using approximation techniques

被引:0
|
作者
Coja-Oghlan, A
Goerdt, A
Lanka, A
Schädlich, F
机构
[1] Humboldt Univ, Inst Informat, D-10099 Berlin, Germany
[2] Tech Univ Chemnitz, Fak Informat, D-09107 Chemnitz, Germany
来源
FUNDAMENTALS OF COMPUTATION THEORY, PROCEEDINGS | 2003年 / 2751卷
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Let k be an even integer. We investigate the applicability of approximation techniques to the problem of deciding whether a random k-SAT formula is satisfiable. Let n be the number of propositional variables under consideration. First we show that if the number m of clauses satisfies m greater than or equal to Cn(k/2) for a certain constant C, then unsatisfiability can be certified efficiently using (known) approximation algorithms for MAX CUT or MIN BISECTION. In addition, we present an algorithm based on the Lovasz I function that within polynomial expected time decides whether the input formula is satisfiable, provided m greater than or equal to Cn(k/2). These results improve previous work by Goerdt and Krivelevich [14]. Finally, we present an algorithm that approximates random MAX 2-SAT within expected polynomial time.
引用
收藏
页码:15 / 26
页数:12
相关论文
共 50 条