Certifying unsatisfiability of random 2k-SAT formulas using approximation techniques

被引:0
|
作者
Coja-Oghlan, A
Goerdt, A
Lanka, A
Schädlich, F
机构
[1] Humboldt Univ, Inst Informat, D-10099 Berlin, Germany
[2] Tech Univ Chemnitz, Fak Informat, D-09107 Chemnitz, Germany
来源
FUNDAMENTALS OF COMPUTATION THEORY, PROCEEDINGS | 2003年 / 2751卷
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Let k be an even integer. We investigate the applicability of approximation techniques to the problem of deciding whether a random k-SAT formula is satisfiable. Let n be the number of propositional variables under consideration. First we show that if the number m of clauses satisfies m greater than or equal to Cn(k/2) for a certain constant C, then unsatisfiability can be certified efficiently using (known) approximation algorithms for MAX CUT or MIN BISECTION. In addition, we present an algorithm based on the Lovasz I function that within polynomial expected time decides whether the input formula is satisfiable, provided m greater than or equal to Cn(k/2). These results improve previous work by Goerdt and Krivelevich [14]. Finally, we present an algorithm that approximates random MAX 2-SAT within expected polynomial time.
引用
收藏
页码:15 / 26
页数:12
相关论文
共 50 条
  • [1] Techniques from combinatorial approximation algorithms yield efficient algorithms for random 2k-SAT
    Coja-Oghlan, A
    Goerdt, A
    Lanka, A
    Schädlich, F
    THEORETICAL COMPUTER SCIENCE, 2004, 329 (1-3) : 1 - 45
  • [2] Random 2-SAT and unsatisfiability
    Verhoeven, Yann
    Information Processing Letters, 1999, 72 (03): : 119 - 123
  • [3] Random 2-SAT and unsatisfiability
    Verhoeven, Y
    INFORMATION PROCESSING LETTERS, 1999, 72 (3-4) : 119 - 123
  • [4] Kolmogorov complexity based upper bounds for the unsatisfiability threshold of random k-SAT
    Antonopoulou, Hera
    JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2020, 23 (07): : 1431 - 1438
  • [5] Regular Random k-SAT: Properties of Balanced Formulas
    Yacine Boufkhad
    Olivier Dubois
    Yannet Interian
    Bart Selman
    Journal of Automated Reasoning, 2005, 35 : 181 - 200
  • [6] Regular random k-SAT:: Properties of balanced formulas
    Boufkhad, Yacine
    Dubois, Olivier
    Interian, Yannet
    Selman, Bart
    JOURNAL OF AUTOMATED REASONING, 2005, 35 (1-3) : 181 - 200
  • [7] The Number of Satisfying Assignments of Random Regular k-SAT Formulas
    Coja-Oghlan, Amin
    Wormald, Nick
    COMBINATORICS PROBABILITY & COMPUTING, 2018, 27 (04): : 496 - 530
  • [8] The number of satisfying assignments of random 2-SAT formulas
    Achlioptas, Dimitris
    Coja-Oghlan, Amin
    Hahn-Klimroth, Max
    Lee, Joon
    Mueller, Noela
    Penschuck, Manuel
    Zhou, Guangyan
    RANDOM STRUCTURES & ALGORITHMS, 2021, 58 (04) : 609 - 647
  • [9] Some results on random unsatisfiable k-Sat instances and approximation algorithms applied to random structures
    Goerdt, A
    Jurdzinski, T
    COMBINATORICS PROBABILITY & COMPUTING, 2003, 12 (03): : 245 - 267
  • [10] Some results on random unsatisfiable k-Sat instances and approximation algorithms applied to random structures
    Goerdt, A
    Jurdzinski, T
    MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE 2002, 2002, 2420 : 280 - 291