Nonlocal modified KdV equations and their soliton solutions by Hirota Method

被引:96
作者
Gurses, Metin [1 ]
Pekcan, Asli [2 ]
机构
[1] Bilkent Univ, Dept Math, Fac Sci, TR-06800 Ankara, Turkey
[2] Hacettepe Univ, Fac Sci, Dept Math, TR-06800 Ankara, Turkey
来源
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION | 2019年 / 67卷
关键词
Ablowitz-Musslimani reduction; Nonlocal mKdV equations; Hirota bilinear form; Soliton solutions; DE-VRIES EQUATION; INVERSE SCATTERING TRANSFORM;
D O I
10.1016/j.cnsns.2018.07.013
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the nonlocal modified Korteweg-de Vries (mKdV) equations obtained from AKNS scheme by Ablowitz-Musslimani type nonlocal reductions. We first find soliton solutions of the coupled mKdV system by using the Hirota direct method. Then by using the Ablowitz-Musslimani reduction formulas, we find one-, two-, and three-soliton solutions of nonlocal mKdV and nonlocal complex mKdV equations. The soliton solutions of these equations are of two types. We give one-soliton solutions of both types and present only first type of two- and three-soliton solutions. We illustrate our solutions by plotting their graphs for particular values of the parameters. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:427 / 448
页数:22
相关论文
共 33 条
[11]   On integrable wave interactions and Lax pairs on symmetric spaces [J].
Gerdjikov, Vladimir S. ;
Grahovski, Georgi G. ;
Ivanov, Rossen I. .
WAVE MOTION, 2017, 71 :53-70
[12]  
Gurses M., 2017, ARXIV170401273 NLINS
[13]  
Gurses M, 2017, ARXIV171101588V2 NLI
[14]   Nonlocal nonlinear Schrodinger equations and their soliton solutions [J].
Gurses, Metin ;
Pekcan, Asli .
JOURNAL OF MATHEMATICAL PHYSICS, 2018, 59 (05)
[15]   Nonlocal Fordy-Kulish equations on symmetric spaces [J].
Gurses, Metin .
PHYSICS LETTERS A, 2017, 381 (21) :1791-1794
[16]   EXACT SOLUTION OF MODIFIED KORTEWEG-DE VRIES EQUATION FOR MULTIPLE COLLISIONS OF SOLITONS [J].
HIROTA, R .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1972, 33 (05) :1456-1458
[17]   Soliton solutions for the nonlocal nonlinear Schrodinger equation [J].
Huang, Xin ;
Ling, Liming .
EUROPEAN PHYSICAL JOURNAL PLUS, 2016, 131 (05)
[18]   Soliton solutions of a coupled modified KdV equations [J].
Iwao, M ;
Hirota, R .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1997, 66 (03) :577-588
[19]   Soliton solutions of an integrable nonlocal modified Korteweg-de Vries equation through inverse scattering transform [J].
Ji, Jia-Liang ;
Zhu, Zuo-Nong .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 453 (02) :973-984
[20]   On a nonlocal modified Korteweg-de Vries equation: Integrability, Darboux transformation and soliton solutions [J].
Ji, Jia-Liang ;
Zhu, Zuo-Nong .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2017, 42 :699-708