Nonlocal modified KdV equations and their soliton solutions by Hirota Method

被引:96
作者
Gurses, Metin [1 ]
Pekcan, Asli [2 ]
机构
[1] Bilkent Univ, Dept Math, Fac Sci, TR-06800 Ankara, Turkey
[2] Hacettepe Univ, Fac Sci, Dept Math, TR-06800 Ankara, Turkey
来源
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION | 2019年 / 67卷
关键词
Ablowitz-Musslimani reduction; Nonlocal mKdV equations; Hirota bilinear form; Soliton solutions; DE-VRIES EQUATION; INVERSE SCATTERING TRANSFORM;
D O I
10.1016/j.cnsns.2018.07.013
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the nonlocal modified Korteweg-de Vries (mKdV) equations obtained from AKNS scheme by Ablowitz-Musslimani type nonlocal reductions. We first find soliton solutions of the coupled mKdV system by using the Hirota direct method. Then by using the Ablowitz-Musslimani reduction formulas, we find one-, two-, and three-soliton solutions of nonlocal mKdV and nonlocal complex mKdV equations. The soliton solutions of these equations are of two types. We give one-soliton solutions of both types and present only first type of two- and three-soliton solutions. We illustrate our solutions by plotting their graphs for particular values of the parameters. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:427 / 448
页数:22
相关论文
共 33 条
[1]   Integrable Nonlocal Nonlinear Equations [J].
Ablowitz, Mark J. ;
Musslimani, Ziad H. .
STUDIES IN APPLIED MATHEMATICS, 2017, 139 (01) :7-59
[2]   Inverse scattering transform for the integrable nonlocal nonlinear Schrodinger equation [J].
Ablowitz, Mark J. ;
Musslimani, Ziad H. .
NONLINEARITY, 2016, 29 (03) :915-946
[3]   Integrable Nonlocal Nonlinear Schrodinger Equation [J].
Ablowitz, Mark J. ;
Musslimani, Ziad H. .
PHYSICAL REVIEW LETTERS, 2013, 110 (06)
[4]  
ABLOWITZ MJ, 1974, STUD APPL MATH, V53, P249
[6]  
Feng BF, 2017, ARXIV171209172 NLIN
[7]   Integrable multidimensional versions of the nonlocal nonlinear Schrodinger equation [J].
Fokas, A. S. .
NONLINEARITY, 2016, 29 (02) :319-324
[8]   On Nonlocal Models of Kulish-Sklyanin Type and Generalized Fourier Transforms [J].
Gerdjikov, V. S. .
ADVANCED COMPUTING IN INDUSTRIAL MATHEMATICS, 2017, 681 :37-52
[9]   Complete integrability of nonlocal nonlinear Schrodinger equation [J].
Gerdjikov, V. S. ;
Saxena, A. .
JOURNAL OF MATHEMATICAL PHYSICS, 2017, 58 (01)
[10]   The N-wave equations with PT symmetry [J].
Gerdjikov, V. S. ;
Grahovski, G. G. ;
Ivanov, R. I. .
THEORETICAL AND MATHEMATICAL PHYSICS, 2016, 188 (03) :1305-1321