Do We Need "Ionosorbed" Oxygen Species? (Or, "A Surface Conductivity Model of Gas Sensitivity in Metal Oxides Based on Variable Surface Oxygen Vacancy Concentration")

被引:31
作者
Blackman, Christopher [1 ]
机构
[1] UCL, Dept Chem, London WC1H 0AJ, England
关键词
Ionosorption; vacancies; mechanism; chemoresistive; surface conductivity; THIN-FILM; SNO2; CO; CONDUCTANCE; SNO2(110);
D O I
10.1021/acssensors.1c01727
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The author provides an opinion on direct experimental evidence available to support the "ionosorption theory" often employed to interpret "electrophysical" measurements made during a gas sensing experiment. This article then aims to provide an alternative framework of a "surface conductivity" model based on recent advances in theoretical and experimental investigations in solid state physics, and to use this framework as a guide toward design rules for future improvement of gas sensor performance.
引用
收藏
页码:3509 / 3516
页数:8
相关论文
共 35 条
  • [1] Characterisation and reactivity of oxygen species at the surface of metal oxides
    Anpo, M.
    Costentin, G.
    Giamello, E.
    Lauron-Pernot, H.
    Sojka, Z.
    [J]. JOURNAL OF CATALYSIS, 2021, 393 : 259 - 280
  • [2] Modeling of sensing and transduction for p-type semiconducting metal oxide based gas sensors
    Barsan, N.
    Simion, C.
    Heine, T.
    Pokhrel, S.
    Weimar, U.
    [J]. JOURNAL OF ELECTROCERAMICS, 2010, 25 (01) : 11 - 19
  • [3] Unraveling the Surface Chemistry of CO Sensing with In2O3 Based Gas Sensors
    Boehme, Inci
    Weimar, Udo
    Barsan, Nicolae
    [J]. SENSORS AND ACTUATORS B-CHEMICAL, 2021, 326
  • [4] Photoemission surface characterization of (001) In2O3 thin film through the interactions with oxygen, water and carbon monoxide: Comparison with (111) orientation
    Brinzari, V.
    Cho, B. K.
    Kamei, M.
    Korotcenkov, G.
    [J]. APPLIED SURFACE SCIENCE, 2015, 324 : 123 - 133
  • [5] Deep vs shallow nature of oxygen vacancies and consequent n-type carrier concentrations in transparent conducting oxides
    Buckeridge, J.
    Catlow, C. R. A.
    Farrow, M. R.
    Logsdail, A. J.
    Scanlon, D. O.
    Keal, T. W.
    Sherwood, P.
    Woodley, S. M.
    Sokol, A. A.
    Walsh, A.
    [J]. PHYSICAL REVIEW MATERIALS, 2018, 2 (05):
  • [6] Tunable two-dimensional electron system at the (110) surface of SnO2
    Dai, J.
    Frantzeskakis, E.
    Fortuna, F.
    Loemker, P.
    Yukawa, R.
    Thees, M.
    Sengupta, S.
    Le Fevre, P.
    Bertran, F.
    Rault, J. E.
    Horiba, K.
    Mueller, M.
    Kumigashira, H.
    Santander-Syro, A. F.
    [J]. PHYSICAL REVIEW B, 2020, 101 (08)
  • [7] Current Understanding of the Fundamental Mechanisms of Doped and Loaded Semiconducting Metal-Oxide-Based Gas Sensing Materials
    Degler, David
    Weimar, Udo
    Barsan, Nicolae
    [J]. ACS SENSORS, 2019, 4 (09) : 2228 - 2249
  • [8] Identifying the Active Oxygen Species in SnO2 Based Gas Sensing Materials: An Operando IR Spectrsocopy Study
    Degler, David
    Wicker, Susanne
    Weimar, Udo
    Barsan, Nicolae
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2015, 119 (21) : 11792 - 11799
  • [9] A computational chemist approach to gas sensors: Modeling the response of SnO2 to CO, O2, and H2O Gases
    Ducere, Jean-Marie
    Hemeryck, Anne
    Esteve, Alain
    Rouhani, Mehdi Djafari
    Landa, Georges
    Menini, Philippe
    Tropis, Cyril
    Maisonnat, Andre
    Fau, Pierre
    Chaudret, Bruno
    [J]. JOURNAL OF COMPUTATIONAL CHEMISTRY, 2012, 33 (03) : 247 - 258
  • [10] Elucidating the Mechanism of Working SnO2 Gas Sensors Using Combined Operando UV/Vis, Raman, and IR Spectroscopy
    Elger, Ann-Kathrin
    Hess, Christian
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2019, 58 (42) : 15057 - 15061