Do We Need "Ionosorbed" Oxygen Species? (Or, "A Surface Conductivity Model of Gas Sensitivity in Metal Oxides Based on Variable Surface Oxygen Vacancy Concentration")

被引:32
作者
Blackman, Christopher [1 ]
机构
[1] UCL, Dept Chem, London WC1H 0AJ, England
关键词
Ionosorption; vacancies; mechanism; chemoresistive; surface conductivity; THIN-FILM; SNO2; CO; CONDUCTANCE; SNO2(110);
D O I
10.1021/acssensors.1c01727
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The author provides an opinion on direct experimental evidence available to support the "ionosorption theory" often employed to interpret "electrophysical" measurements made during a gas sensing experiment. This article then aims to provide an alternative framework of a "surface conductivity" model based on recent advances in theoretical and experimental investigations in solid state physics, and to use this framework as a guide toward design rules for future improvement of gas sensor performance.
引用
收藏
页码:3509 / 3516
页数:8
相关论文
共 35 条
[1]   Characterisation and reactivity of oxygen species at the surface of metal oxides [J].
Anpo, M. ;
Costentin, G. ;
Giamello, E. ;
Lauron-Pernot, H. ;
Sojka, Z. .
JOURNAL OF CATALYSIS, 2021, 393 :259-280
[2]   Modeling of sensing and transduction for p-type semiconducting metal oxide based gas sensors [J].
Barsan, N. ;
Simion, C. ;
Heine, T. ;
Pokhrel, S. ;
Weimar, U. .
JOURNAL OF ELECTROCERAMICS, 2010, 25 (01) :11-19
[3]   Unraveling the Surface Chemistry of CO Sensing with In2O3 Based Gas Sensors [J].
Boehme, Inci ;
Weimar, Udo ;
Barsan, Nicolae .
SENSORS AND ACTUATORS B-CHEMICAL, 2021, 326
[4]   Photoemission surface characterization of (001) In2O3 thin film through the interactions with oxygen, water and carbon monoxide: Comparison with (111) orientation [J].
Brinzari, V. ;
Cho, B. K. ;
Kamei, M. ;
Korotcenkov, G. .
APPLIED SURFACE SCIENCE, 2015, 324 :123-133
[5]   Deep vs shallow nature of oxygen vacancies and consequent n-type carrier concentrations in transparent conducting oxides [J].
Buckeridge, J. ;
Catlow, C. R. A. ;
Farrow, M. R. ;
Logsdail, A. J. ;
Scanlon, D. O. ;
Keal, T. W. ;
Sherwood, P. ;
Woodley, S. M. ;
Sokol, A. A. ;
Walsh, A. .
PHYSICAL REVIEW MATERIALS, 2018, 2 (05)
[6]   Tunable two-dimensional electron system at the (110) surface of SnO2 [J].
Dai, J. ;
Frantzeskakis, E. ;
Fortuna, F. ;
Loemker, P. ;
Yukawa, R. ;
Thees, M. ;
Sengupta, S. ;
Le Fevre, P. ;
Bertran, F. ;
Rault, J. E. ;
Horiba, K. ;
Mueller, M. ;
Kumigashira, H. ;
Santander-Syro, A. F. .
PHYSICAL REVIEW B, 2020, 101 (08)
[7]   Current Understanding of the Fundamental Mechanisms of Doped and Loaded Semiconducting Metal-Oxide-Based Gas Sensing Materials [J].
Degler, David ;
Weimar, Udo ;
Barsan, Nicolae .
ACS SENSORS, 2019, 4 (09) :2228-2249
[8]   Identifying the Active Oxygen Species in SnO2 Based Gas Sensing Materials: An Operando IR Spectrsocopy Study [J].
Degler, David ;
Wicker, Susanne ;
Weimar, Udo ;
Barsan, Nicolae .
JOURNAL OF PHYSICAL CHEMISTRY C, 2015, 119 (21) :11792-11799
[9]   A computational chemist approach to gas sensors: Modeling the response of SnO2 to CO, O2, and H2O Gases [J].
Ducere, Jean-Marie ;
Hemeryck, Anne ;
Esteve, Alain ;
Rouhani, Mehdi Djafari ;
Landa, Georges ;
Menini, Philippe ;
Tropis, Cyril ;
Maisonnat, Andre ;
Fau, Pierre ;
Chaudret, Bruno .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 2012, 33 (03) :247-258
[10]   Elucidating the Mechanism of Working SnO2 Gas Sensors Using Combined Operando UV/Vis, Raman, and IR Spectroscopy [J].
Elger, Ann-Kathrin ;
Hess, Christian .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2019, 58 (42) :15057-15061