Steady state modelling of steam-gasification of biomass for H2-rich syngas production

被引:26
作者
Liu, Zhibin [1 ]
Zhao, Chuankai [2 ]
Cai, Longhao [3 ]
Long, Xinman [4 ]
机构
[1] Southwest Petr Univ, Sch Sci, Chengdu 610500, Sichuan, Peoples R China
[2] Southwest Petr Univ, Sch Petr Engn, Chengdu 610500, Sichuan, Peoples R China
[3] PetroChina, Drilling & Prod Technol Res Inst Liaohe Oilfield, Panjin 124000, Liaoning, Peoples R China
[4] PetroChina Xinjiang Oilfield Co, Res Inst Expt & Detect, Karamay 834000, Xinjiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Biomass; Gasification; Aspen plus; Free-tar syngas; Simulation; BUBBLING FLUIDIZED-BED; CHEMICAL LOOPING GASIFICATION; RICH GAS-PRODUCTION; GASIFYING AGENTS; ASPEN PLUS; PERFORMANCE; AIR; OLIVINE; TAR; TEMPERATURE;
D O I
10.1016/j.energy.2021.121616
中图分类号
O414.1 [热力学];
学科分类号
摘要
Due to its abundance, biomass is widely used in many engineering applications such as gasification process. Using biomass as a raw material for H-2-rich syngas production can not only reduce greenhouse gas emissions but also promote renewable energy utilization. In this study, a multi-stage model for H-2 rich syngas production from biomass gasification was developed and studied using Aspen Plus simulator. The model is divided into four sub-models including drying sub-model, devolatilization sub-model, tar cracking sub model and gasification sub model. Performance of biomass gasifier was evaluated by predicting the gas yield, lower heating value of produced syngas, carbon conversion efficiency and cold gas efficiency. The maximum H-2 content of 14.9 vol% was achived when S/B and reaction temperature were 1.0 and 1123 K, respectively. The highest CCE of 67.8 % and CGE of 37.9 % were also achieved at 1123 K. An increase in S/B from 0 to 0.5 led to a lower tar yield, which was from 133.557 g/Nm(3) to 127.193 g/Nm(3), and then leveled off as loading increased further from 0.5 to 1.0. The results also showed that during high S/B conditions, the gas-phase chemistry is dominated by water-gas shift (WGS) and Boudouard reactions. (C) 2021 Elsevier Ltd. All rights reserved.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Hydrogen and syngas production from steam gasification of biomass using cement as catalyst
    Sui, Ming
    Li, Guo-ying
    Guan, Yong-lin
    Li, Chun-ming
    Zhou, Rong-qing
    Zarnegar, Amir-Mohsen
    BIOMASS CONVERSION AND BIOREFINERY, 2020, 10 (01) : 119 - 124
  • [22] Production of H2-rich syngas from gasification of unsorted food waste in supercritical water
    Su, Hongcai
    Kanchanatip, Ekkachai
    Wang, Defeng
    Zheng, Rendong
    Huang, Zhicheng
    Chen, Yang
    Mubeen, Ishrat
    Yan, Mi
    WASTE MANAGEMENT, 2020, 102 : 520 - 527
  • [23] Thermodynamic equilibrium analysis of H2-rich syngas production via sorption-enhanced chemical looping biomass gasification
    Chein, Rei-Yu
    Hsu, Wen-Huai
    RENEWABLE ENERGY, 2020, 153 : 117 - 129
  • [24] Steam Gasification of Refuse-Derived Fuel with CaO Modification for Hydrogen-Rich Syngas Production
    Ren, Ranwei
    Wang, Haiming
    You, Changfu
    ENERGIES, 2022, 15 (21)
  • [25] High quality H2-rich syngas production from pyrolysis-gasification of biomass and plastic wastes by Ni-Fe@Nanofibers/Porous carbon catalyst
    Zhang, Shuping
    Zhu, Shuguang
    Zhang, Houlei
    Liu, Xinzhi
    Xiong, Yuanquan
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2019, 44 (48) : 26193 - 26203
  • [26] Structural and catalytic studies of Mg1-xNixO nanomaterials for gasification of biomass in supercritical water for H2-rich syngas production
    Mastuli, Mohd Sufri
    Kasim, Muhd Firdaus
    Mahat, Annie Maria
    Asikin-Mijan, N.
    Sivasangar, S.
    Taufiq-Yap, Yun Hin
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2020, 45 (58) : 33218 - 33234
  • [27] Numerical and experimental investigation of hydrogen-rich syngas production via biomass gasification
    Aydin, Ebubekir Siddik
    Yucel, Ozgun
    Sadikoglu, Hasan
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2018, 43 (02) : 1105 - 1115
  • [28] Syngas production from air-steam gasification of biomass with natural catalysts
    Tian, Ye
    Zhou, Xiong
    Lin, Shunhong
    Ji, Xuanyu
    Bai, Jisong
    Xu, Ming
    SCIENCE OF THE TOTAL ENVIRONMENT, 2018, 645 : 518 - 523
  • [29] Sustainable H2-rich bio-syngas production from high moisture wastes: Steam gasification of hydrochars obtained from apple pomace in single and binary solvent systems
    Wadrzyk, Mariusz
    Grzywacz, Przemyslaw
    Plata, Marek
    Soprych, Piotr
    Janus, Rafal
    Lewandowski, Marek
    Korzeniowski, Lukasz
    RENEWABLE ENERGY, 2025, 245
  • [30] Hydrogen and syngas production from steam gasification of biomass using cement as catalyst
    Ming Sui
    Guo-ying Li
    Yong-lin Guan
    Chun-ming Li
    Rong-qing Zhou
    Amir-Mohsen Zarnegar
    Biomass Conversion and Biorefinery, 2020, 10 : 119 - 124